

2022 Power Strategic Long-Term Resource Plan (SLTRP) Roadmap to 100% Carbon Free by 2035

SLTRP Advisory Group Meeting #4 Phase II (Scenario Development) October 22, 2021

Meeting Agenda

Joan Isaacson, Kearns & West

- Welcome & Introductions
- Meeting Purpose and Agenda Overview
- Customer-Focused Programs
 - Energy Efficiency & Building Electrification
 - Transportation Electrification
 - Demand Response
- 2022 SLTRP: Draft Scenario Matrix
- 2022 SLTRP: Breakout Discussion Sessions
- Wrap Up

Website: <u>www.ladwp.com/SLTRP</u> Email: <u>powerSLTRP@ladwp.com</u>

Guides for Productive Virtual Meetings

Use Chat for input OR Raise Hand to join the conversation

Help to make sure everyone gets equal time to give input

Keep input concise so others have time to participate

Actively listen to others, seek to understand perspectives

Offer ideas to address questions and concerns raised by others

Advisory Group Meeting Plan

Phase 1 Q3 2021 Launch & Laying Foundation	Phase 2 Q3 2021 Scenario Development	Phase 3 Q4 2021 Modeling	Phase 4 Q1 2022 Results	Phase 5 Q2-3 2022 Outreach
 #1 September 23 Advisory Group Launch LADWP Overview LA100 (Achieving 100% Renewable Energy) 2022 SLTRP Orientation Advisory Group Protocols & Operating Principles 	 #4 October 22 Customer Focused Programs Energy Efficiency & Building - Electrification Transportation Electrification Demand Response Draft Scenario Matrix 	 November-January Internal Modeling Analysis of Scenarios 	#7 February TBD Preliminary Results	#8 July TBD Public Outreach Results
 #2 September 30 LA100 Study Review (NREL) at 9 am LA100 Rates Analysis (OPA) at 10 am LA100 Next Steps (LADWP) LA100 Assumptions (PSRP) Consider Topics for October 22 Consideration of Scenario Definition 	 #5 November 10 Metrics & Evaluation Process Scenario Considerations Implementation & Feasibility Supply Chain Impacts Human Resources Plan Energy Burden Refine Scenario Matrix 	Modeling Underway	March – April TBD Potential field	August Review Draft 2022 SLTRP
 #3 October 08 SLTRP Deep Dive SB100 Review (LADWP) 100% Carbon-Free by 2035 Requirements (NREL) Green Hydrogen in LA (LADWP) 2022 SLTRP Key Considerations and Potential Scenarios 	 #6 November 19 Develop Scenarios Final Scenario Matrix 	Modeling Underway	May – June TBD Community Outreach Meetings	September Submit Final 2022 SLTRP for approval

Advisory Group Role in 2022 SLTRP

The Advisory Group will provide input and feedback based on their expertise, knowledge, and resources of the organizations, institutions, and constituent groups represented by Advisory Group members.

Role of Customer-Focused Programs

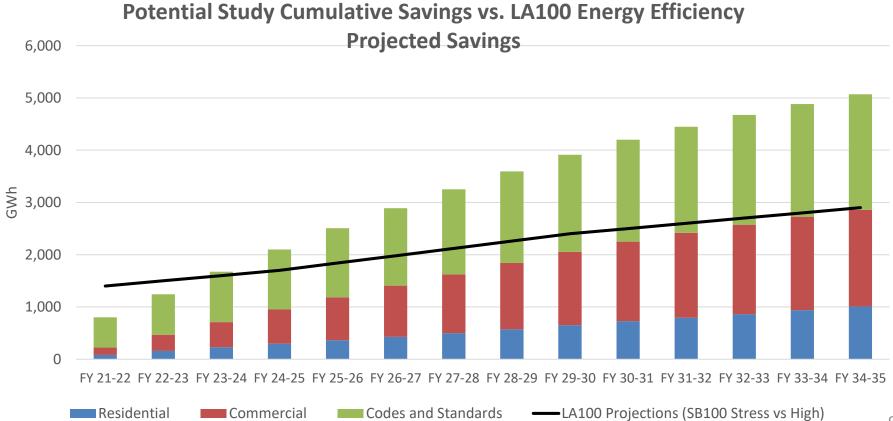
LA100 showed customers have an important role to play in reaching 100% carbon-free energy.

Energy efficiency: Offsets electrification-driven load growth; mitigates potentially higher electricity rates; lowers energy burden for low-income residents.

Greater electrification: Contributes to higher public health and GHG benefits; helps reduce per-unit electricity cost.

Customer demand flexibility: Helps contain costs of adding electrification and achieving 100% renewable energy; also supports reliability.

LADWP Energy Efficiency and Building Electrification Programs David Jacot, LADWP Director of Efficiency Solutions


LA100 Study – LADWP & NREL

The 100% Renewable Energy Study was completed and final report was released on March 24, 2021.

- 100% renewable energy in LA by 2035 is achievable through multiple pathways
- Rate impacts will approximately track inflation IF we see robust electrification (transportation and buildings)
- Significant investment (approx. \$50-80B) and job creation
- Lowest cost pathway <u>requires</u> significant growth in customer-facing Distributed Energy Resources (DER) programs like energy efficiency, demand response and flexibility, onsite solar and storage, electrification, etc.
- DERs, and EE in particular, make everything else smaller:
 - Utility scale renewable generation and storage
 - Transmission, distribution, and substation upgrades

Onward to 2030 and Beyond

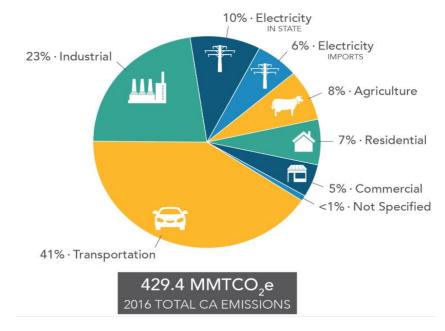
Overview of LADWP's **Portfolio of Energy** Efficiency **Programs**

Mass Market (Residential)

- Consumer Rebate Program
- Comprehensive Affordable Multifamily Retrofit (coming soon)
- Efficient Product Marketplace
- Residential Lighting Efficiency Program
- Refrigerator Exchange
- Refrigerator Turn-In & Recycle
- Home Energy
 Improvement Program
- AC Optimization
- City Plants

Commercial,	Industrial &
Institutional	

- Commercial Direct Install
- LAUSD Direct Install
- Commercial Lighting
 Incentive Program
- Custom Performance
 Program
- Zero By Design
- Food Service Program
- Upstream HVAC
- Commercial Product Marketplace (coming soon)

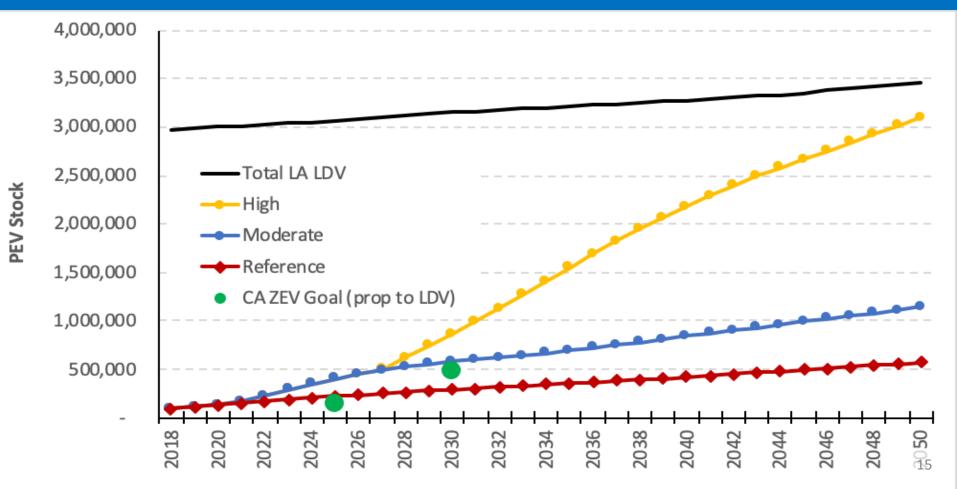

Comprehensive Affordable Multifamily Retrofits (CAMR)

- Deep decarbonization of multi-family buildings by retrofitting for energy efficiency, building electrification, and on-site solar PV
- Significant utility cost savings for low income tenants and affordable housing property owners and managers
- Skilled, family-supporting green jobs for the local workforce

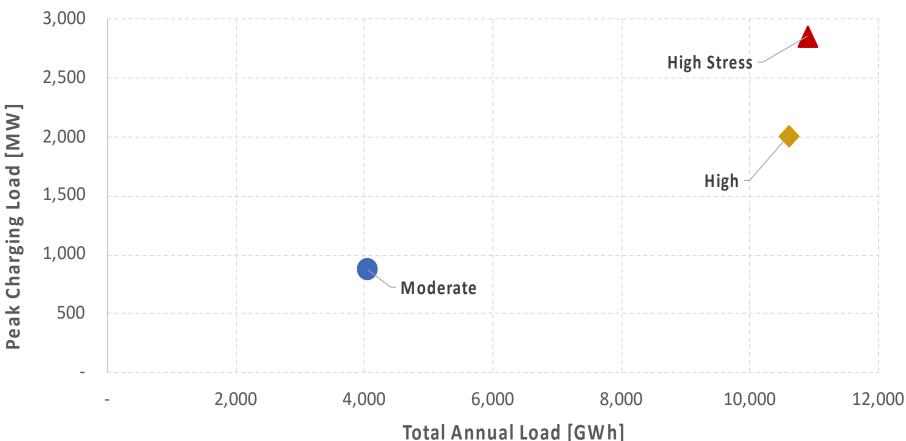
CA GHG Inventory

Emissions by Economic Sector

Source: CARB 2018 GHG Inventory Report


Discussion and Q&A

LADWP Electric Transportation Programs Yamen Nanne, LADWP Manager of Distribution System Development and Reliability



LA100 Electric Vehicle Adoption Projections

LA100 Load Projections from Transportation

Light-duty EV Charging Loads

16

State Zero Emissions Vehicle (EV) Goals

Governor Newsom's Executive Order (N-79-20):

- Requires dealers to end sale of new fossil fueled light-duty passenger vehicles by 2035.
- Electrify Freight Trucks by 2035 and Medium & Heavy Duty Fleets by 2045.

Assembly Bill 2127 EV Charging Infrastructure Assessment :

- Baseline: 1M public and shared private EV chargers are needed to support 5M EVs by 2030.
- CARB 2020 Mobile Source Strategy: 1.2M chargers will be needed for the 7.5M EVs required by 2030 in CA based on CARB's Draft 2020 Mobile Source Strategy.

00

LADWP's Revised Electric Transportation Goals

Electric Vehicle Adoption Targets:

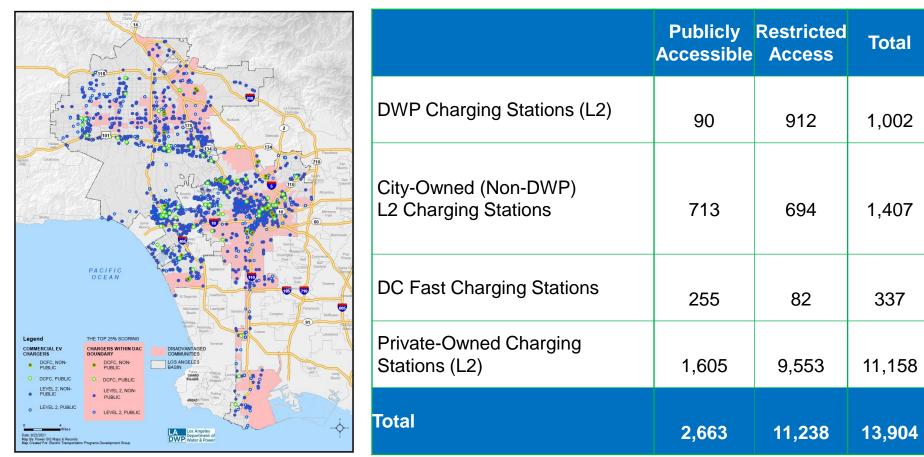
- 250,000 Light Duty (LD) and 4,000 Medium Duty and Heavy Duty (MDHD) EVs by 2025
- 550,000 LD EVs by 2028
- 750,000 LD and 12,000 MDHD EVs by 2030

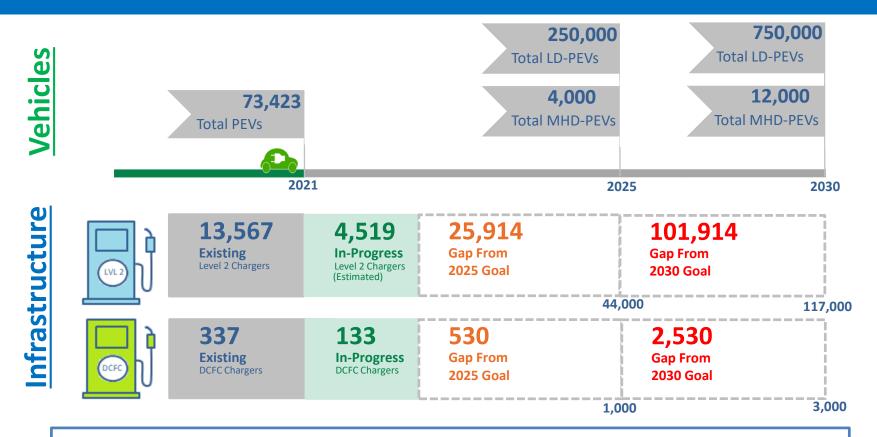
Commercial EV Charging Infrastructure:

- 45,000 Charging Stations by 2025 Including 1,000 DC Fast Chargers
- 120,000 Charging Stations by 2030 Including 3,000 Fast Chargers

Electrification of City and Transit Fleets:

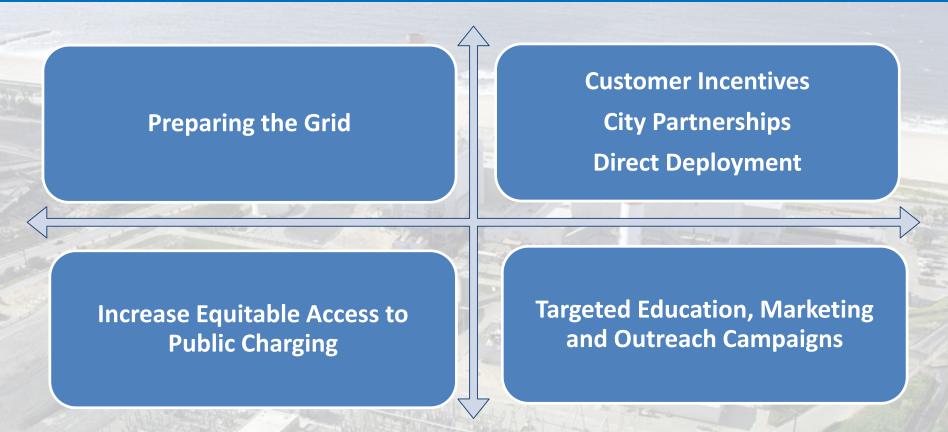
- ED25 Electrify all new City light duty sedans in 2021
- 100% by 2028 (where technically feasible)





LA's Charging Station Map

Revised EV Adoption Goals & Infrastructure Needs


Achieving the New Goals Bridges the Gap needed to Spur Targeted EV Adoption

Light, Medium, and Heavy Duty EV Population, Energy Consumption, and CO2 Reduction

Light Duty + Medium & Heavy Duty

8,000,000															
7,000,000															
6,000,000													-		
5,000,000															
4,000,000														1	
3,000,000								_				1			
2,000,000															
1,000,000							1								
-															
	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
				Рор	ulation	Cons	sumption (N	/Wh) -	CO2 Re	duction (m	netric tons)				21

Electric Transportation Program Initiatives and Strategies

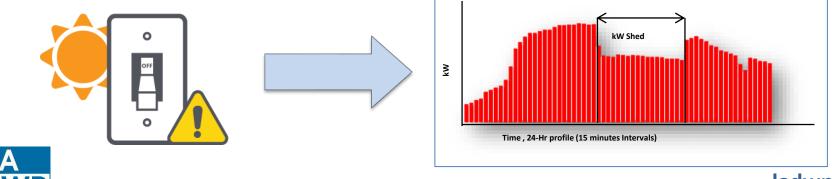
Commercial EV Charging Station Rebate Programs

Level 2 Chargers	 Up to \$4,000 per level 2 charging station, with \$1,000 adder in DACs Increases access to charging at MUDs, workplaces, and public destinations 	\$40M FY 21-22 (Proposed)
		Commercial L2 EV Chargers \$24M
DC Fast Chargers	 Up to \$75,000 per DC Fast Charger Improves access to fast charging 	Commercial DC Fast Chargers \$7M
	and alleviates range anxiety	Commercial MDHD EV Chargers
Chargers for	 Up to \$125,000 per charging station 	Residential L2 EV Chargers \$2M
Medium- and Heavy- Duty Vehicles	 Helps electrify one of the largest source of pollution across the transportation sector 	Used Electric Vehicles \$3M

Planned Improvements Used EV and Residential Charger Rebate Programs

	Program	Current Rebate Amount	Proposed Changes (+ Equity Adder)	Total Rebate	Total Rebate Amount (with Low Income Adder)	
	Used EV Rebate	\$1,500	+\$1,500 for Low Income	\$1,500	\$3,000	
لی ۲ Level 2	Residential L2 Charging Station	\$500 for L2 charger	+\$500 for charger installation + \$500 for Low Income	\$1,000	\$1,500	

Discussion and Q&A


Demand Response Programs Hassan Motallebi, LADWP Manager of Demand Response Programs Zaw Htin, Program Lead Linda Novoa, Program Engineer

Demand Response

What is demand response?

- Change in electric load (reductions, shifts, or increases) in response to market or system conditions
- Or, a Smart Resource-Load Management Strategy

ladwp.com₂₇

Demand Response Benefit

PROVIDES T&D SUPPORT

Relieves system's load during peak demand conditions

REDUCES ENVIRONMENTAL IMPACT

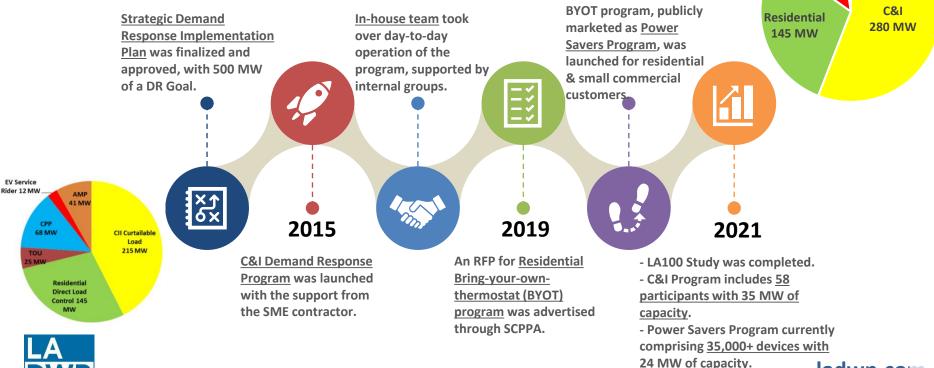
Reduces greenhouse gas emissions and carbon footprint

INTEGRATES RENEWABLES

Promotes grid integration of renewable energy

INCREASES ENERGY RELIABILITY

Helps lower chances of outages



Demand Response Timeline

2017

2014

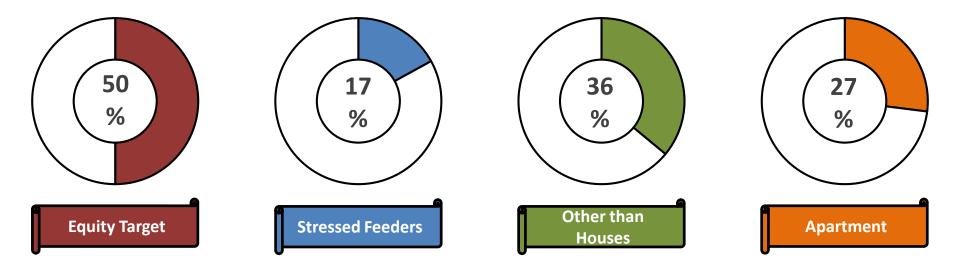
2020

ladwp.com₂₉

Appliances

11 MW

Power Savers Program Stats



- 31,464 Participants
- 35,033 Thermostats
- Total of 124 MW over 7 events
 - On average 17 MW/event saved (max 23 MW event)
- Total of 303 MWh
 - On average 43 MWh/event saved

ladwp.com₁

Program Achievement

Zip codes from accepted participants were gathered and compared to several zones as seen above

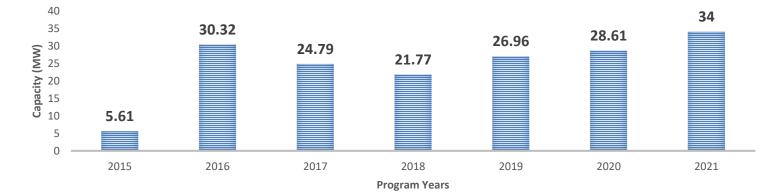
Commercial and Industrial Program

Program

Parameters

For Large Commercial and Industrial Customers

Commitment	Notification	Incentive	Season	DR Event
Requires to Commit <u>Minimum</u> <u>100kW</u> of Load Reduction	2-Hour or 24-Hour Advanced Notification	 Capacity: \$12 or \$8 per kW/mo Energy: \$0.25 per kWH 	From June 15 through October 15	 Maximum 12 Events 1 p.m. to 5 p.m. on Weekdays Up to 4 hr Duration



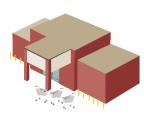
Managed by DR Group with Support from Other Stakeholders (Key Account Management, Rates Group, Communication, ECC, FSO)

ladwp.com₃₃

Commercial & Industrial Program Stats

C&I DR PORTFOLIO

Program Years	2015	2016	2017	2018	2019	2020	2021*
Number of Participants	28	34	40	43	50	49	58
MWh Saved	112	485	522	447	443	658	-
Number of Events	5	4	6	5	3	8	3


ladwp.com₃₄

Participant's Industries

Manufacturing Plants

Office Buildings

Retail Buildings

Grow Houses

Educational Institutes

Museums

Cold Storages

Hotels

Pumping Stations

ladwp.com₃₅

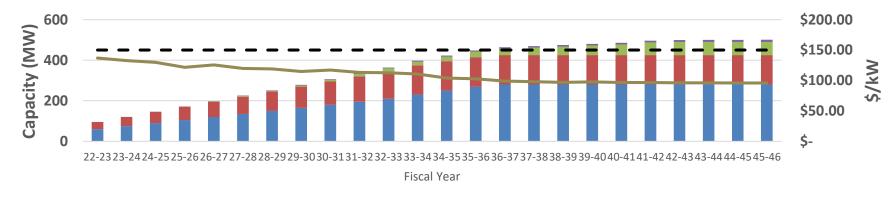
Entertainment Studios

Key Challenges

Customer Recruitment

- Program Awareness
- Outreach Effort
- Competing Program/s

Required Infrastructure


- Automation
- Interval Meters
- Adequate Staffing

ladwp.com₆

Demand Response Goal and Cost

DR Capacity Goal and \$/kW Cost

	Fiscal Year	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31	31-32	32-33	33-34	34-35	35-36	36-37	37-38	38-39	39-40	40-41	41-42	42-43	43-44	44-45	45-46
()	C&I	60	75	90	105	120	135	150	165	180	195	210	230	250	270	280	280	280	280	280	280	280	280	280	280
Σ	Residential	35	45	55	65	75	85	95	105	115	125	135	145	145	145	145	145	145	145	145	145	145	145	145	145
ity	EVC		0.5	1	1.5	2.5	3.5	4.5	5.5	8.5	11.5	14.5	17.5	22.5	27.5	32.5	37.5	42.5	47.5	52.5	62.5	65	65	65	65
pac	Appliances			0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	10.5	11
Ca	\$/kW	\$ 136.84	\$ 132.78	\$ 129.69	\$ 121.74	\$ 125.63	\$ 119.73	\$ 119.05	\$ 114.90	\$ 117.26	\$ 113.26	\$ 112.64	\$ 110.69	\$ 104.02	\$ 102.56	\$ 99.14	\$ 97.98	\$ 96.84	\$ 97.81	\$ 96.71	\$ 96.68	\$ 96.10	\$ 96.00	\$ 95.90	\$ 95.81

ladwp.com₇

Future of LADWP's Demand Response

Grow Existing Programs

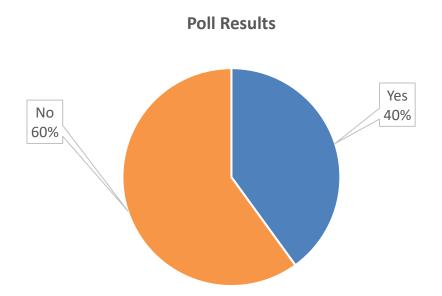
Develop Automated DR System

Implement EV Charger DR Program

Explore More DR Opportunities

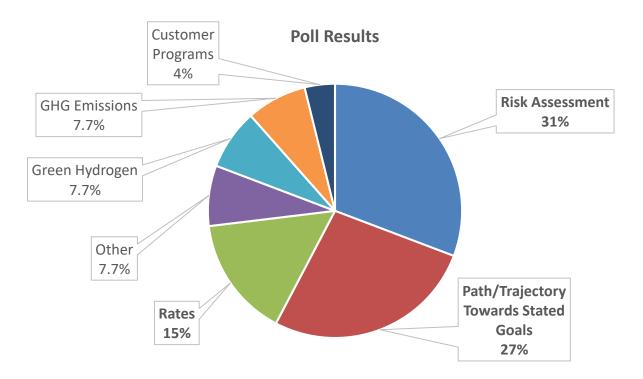
Promote DR Culture in City of LA

Discussion and Q&A



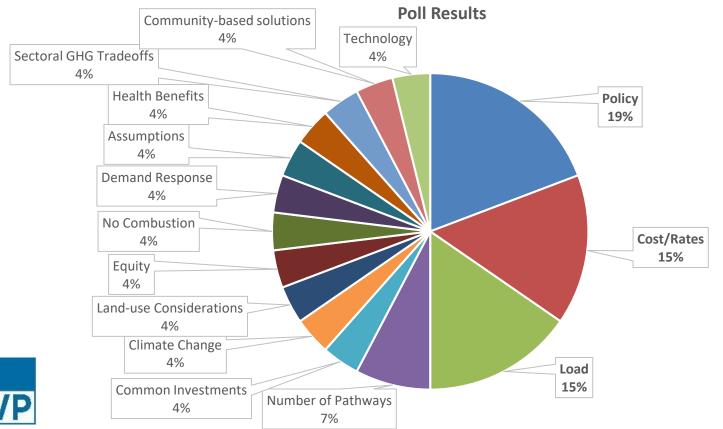
2022 SLTRP: Draft Scenario Matrix Joan Isaacson, Kearns & West Jay Lim, LADWP Manager of Resource Planning

Poll Results, Q1


Q1: Do the draft scenarios presented by LADWP today capture the full spectrum of the Advisory Group's interests and priorities for the SLTRP process?

Poll Results, Q2 (Previous labels)

Q2: If you selected no, what additional scenarios or elements would bolster the draft scenarios presented by LADWP today?



"Other" includes: land-use considerations, single scenario modeling

Poll Results, Q2 (Detailed labels)

Q2: If you selected no, what additional scenarios or elements would bolster the draft scenarios presented by LADWP today?

Response Topics

Path/Trajectory Towards									
	Risk Assessment	Rates	Beliability	Customer Programs	SLTRP Process	GHG Emissions	<u>Green Hydrogen</u>	Resiliency	Other
				-		The recent AG interest is the		-	
						importance of electrification of			
						transportation and building to			
	Look at various demand scenarios					maximum GHG reduction and			
	re pace of electrification in					health benefits, the goal of 100%			
If City Council is mandating option	transportation and building sectors;					versus a lower level, or the use of			
3, which is more aggressive than	seems like that has huge impact on					RECs, should be considered in	A possible equity priority scenario		
option 2, why are we considering	pace and magnitude of increased	Scenario without last 10% which		Multiday demand response		terms of spending more on EVs	and a no in-basin hydrogen		Analyze one pathway so easier to
option 2?	powerneeds	seems to be most costly		scenario		etc. to maximize GHG reduction.	scenario		understand.
	LA100 pointed out there is a risk								
	that climate change will affect								
	renewable production. I would like								
Shouldn't we be analyzing multiple	to see this risk modeled. The risk is								
different scenarios that all meet the									Impact of growing opposition to
requirements from LA City Council,		Also, what is the risk in rates if							large-scale solar and wind on
rather than looking at options that		widespread electrification does not							undisturbed lands, and mining for
don't meet it?	the future.	materialize.					No in basin gas or hydrogen.		materials needed for electrification
Option 2 and 3 should be the same									
for all contracts up to a certain									
decision date, and that date should		Can we use scenarios to look at							
be made clear.	continued decline in load.	the effect of rate design on cost?							
While Hike the three options									
provided, they do not include									
DIVERGENCE from the political									
direction to the Department. As an									
independent engineering business,									
if there are impracticalities in the									
politically-directed goals, or if									
achieving those goals will cost									
ratepayers too much for them to		Contingencies in load level,							
reasonably bear, those political	Analyze more pathways to better	technology and its cost, renewable							
directive should be questioned.	understand contingencies	performance							

Response Topics (continued)

	Bisk Assessment	Bates	Beliability	Customer Programs	SLTRP Process	GHG Emissions	Green Hydrogen	Resiliency	Other
The scenarios should all be within									
the scope of the city council									
	Separate electrification								
separate electrification demand, no	demand								
in basin gas or hydrogen. Multiday									
demand response scenario									
	More scenarios are always good								
	but better to focus on revisiting and								
	testing underlying assumptions in								
	various scenarios								
The recent AG interest is the									
importance of electrification of									
transportation and building to									
maximum GHG reduction and									
health benefits, the goal of 100%									
versus a lower level, or the use of	L								
	Contingencies in load level,								
	technology and its cost, renewable								
etc. to maximize GHG reduction.	performance								

DRAFT SB100 (Reference) Scenario Matrix

		SB 100 (Reference Case)
	2030 RPS Target	60%
	Compliance Year for 100% zero carbon/Carbon-Free	2045 (100% zero carbon by sales)
	Solid Biomass	No
	Biogas/Biofuels	Yes*
	Fuel Cells	Yes*
	Hydro - Existing	Yes*
	Hydro - New	No
Technologies	Hydro - Upgrades	Yes*
Technologies	Natural Gas	Yes*
	H2 Turbines	Yes*
	Nuclear - Existing	Yes*
	Nuclear - New	No
	Wind, Solar, Geo, Small Hydro	Yes*
	Energy Storage	Yes*
Maintain existing gas capacity (non-OTC units)	Haynes, Scattergood, Harbor	Yes
DERs	Local Solar, Local Storage, etc.	Reference
RECS	Financial Mechanisms (RECs/Allowances)	Yes*
	Customer Demand	High/low sensitivities
	Energy Efficiency	Reference
Load	Demand Response	Reference
	Electrification	Reference
Transmission	New or Upgraded Transmission Allowed	Reference
Fuel Prices	Natural Gas, H2, etc.	High/low sensitivities
GHG Prices	GHG Allowance Prices	High/low sensitivities
Storage Prices	Li-Ion, flow, etc.	High/low sensitivities
-	will be determined through the capacity ex	
	Ides RPS + nuclear + large hydro	

SB100 State Legislation

Evaluate under Moderate and High Load Electrification

- 100% clean energy by 2045
- Target based on retail sales by 2045, not generation
- Allows up to 10% of the target to be natural gas offset by renewable electricity credits
- Allows existing nuclear and upgrades to transmission

DRAFT Balanced Decarbonization Scenario Matrix

		Balanced Decarbonization
	2030 RPS Target	80%
	Compliance Year for 100% zero carbon/Carbon-Free	2040 Carbon Free (100% zero carbon by sales in 2035)
	Solid Biomass	No
	Biogas/Biofuels	No
	Fuel Cells	Yes*
	Hydro - Existing	Yes*
	Hydro - New	No
Tashnalagias	Hydro - Upgrades	Yes*
Technologies	Natural Gas	Yes*
	H2 Turbines	Yes*
	Nuclear - Existing	Yes*
	Nuclear - New	No
	Wind, Solar, Geo, Small Hydro	Yes*
	Energy Storage	Yes*
Maintain existing gas apacity (non-OTC units)	Haynes, Scattergood, Harbor	Yes, until made hydrogen ready or replaced by new H2 capacity
DERs	Local Solar, Local Storage, etc.	Moderate
RECS	Financial Mechanisms (RECs/Allowances)	Yes*
	Customer Demand	High/low sensitivities
	Energy Efficiency	High
Load	Demand Response	High
	Electrification	High/low sensitivities
Transmission	New or Upgraded Transmission Allowed	Reference
Fuel Prices	Natural Gas, H2, etc.	High/low sensitivities
GHG Prices	GHG Allowance Prices	High/low sensitivities
Storage Prices	Li-Ion, flow, etc.	High/low sensitivities
	will be determined through the capacity ex	

Balanced Decarbonization

Evaluate under Moderate and High Load Electrification

- 100% clean energy by 2035 and 100% carbon free by 2040, or when practically feasible
- Target based on retail sales by 2035, and based on generation by 2040, or when practically feasible
- Allows up to 10% of the target to be natural gas offset by renewable electricity credits until green hydrogen is fully mature and deployed
- Allow existing nuclear and upgrades to transmission

DRAFT City Council Motion Scenario Matrix

		City Council Motion		
	2030 RPS Target	80%		
	Compliance Year for 100% zero carbon/Carbon-Free	2035 (Carbon Free)		
	Solid Biomass	No		
	Biogas/Biofuels	No		
	Fuel Cells	Yes*, excluding biofuels		
	Hydro - Existing	Yes*		
	Hydro - New	No		
Technologies	Hydro - Upgrades	Yes*		
rechnologies	Natural Gas	Yes*, until 2035		
	H2 Turbines	Yes*		
	Nuclear - Existing	Yes*		
	Nuclear - New	No		
	Wind, Solar, Geo, Small Hydro	Yes*		
	Energy Storage	Yes*		
Maintain existing gas				
capacity (non-OTC units)				
	Haynes, Scattergood, Harbor	Yes, until 2035		
DERs	Local Solar, Local Storage, etc.	High		
RECS	Financial Mechanisms			
	(RECs/Allowances)	No		
	Customer Demand	High/low sensitivities		
Load	Energy Efficiency	High		
	Demand Response	High		
	Electrification	High/low sensitivities		
Transmission	New or Upgraded Transmission Allowed	Moderate		
Fuel Prices	Natural Gas, H2, etc.	High/low sensitivities		
GHG Prices	GHG Allowance Prices	High/low sensitivities		
Storage Prices	Li-Ion, flow, etc.	High/low sensitivities		
*Note: Optimal portfolio	will be determined through the capacity ex	pansion model		

**Note: Zero carbon includes RPS + nuclear + large hydro

City Council Motion

Evaluate under Moderate and High Load Electrification

- 100% carbon free by 2035
- Target based on generation by 2035
- Does not allows renewable electricity credits
- Allow existing nuclear and upgrades to transmission

DRAFT 2022 SLTRP Scenario Matrix

		2022 SLTRP Core Scenarios					
		SB 100 (Reference Case)	Balanced Decarbonization	City Council Motion			
	2030 RPS Target	60%	80%	80%			
	Compliance Year for 100% zero	2045 (100% zero carbon by	2040 Carbon Free (100% zero				
	carbon/Carbon-Free	sales)	carbon by sales in 2035)	2035 (Carbon Free)			
	Solid Biomass	No	No	No			
	Biogas/Biofuels	Yes*	No	No			
	Fuel Cells	Yes*	Yes*	Yes*, excluding biofuels			
	Hydro - Existing	Yes*	Yes*	Yes*			
	Hydro - New	No	No	No			
	Hydro - Upgrades	Yes*	Yes*	Yes*			
Technologies	Natural Gas	Yes*	Yes*	Yes*, until 2035			
	Green H2 Turbines	Yes*	Yes*	Yes*			
	Nuclear - Existing	Yes*	Yes*	Yes*			
	Nuclear - New	No	No	No			
	Wind, Solar, Geo, Small Hydro	Yes*	Yes*	Yes*			
	Energy Storage	Yes*	Yes*	Yes*			
Maintain existing gas			Yes, until made hydrogen				
capacity (non-OTC units)			ready or replaced by new H2				
	Haynes, Scattergood, Harbor, Valley	Yes	capacity	Yes, until 2035			
DERs	Local Solar, Local Storage, etc.	Reference	Moderate	High			
RECS	Financial Mechanisms						
neco	(RECs/Allowances)	Yes*	Yes*	No			
	Customer Demand	High/low sensitivities	High/low sensitivities	High/low sensitivities			
Load	Energy Efficiency	Reference	High	High			
	Demand Response	Reference	High	High			
	Electrification	Reference	High/low sensitivities	High/low sensitivities			
Transmission	New or Upgraded Transmission Allowed	Reference	Reference	Moderate			
Fuel Prices	Natural Gas, H2, etc.	High/low sensitivities	High/low sensitivities	High/low sensitivities			
GHG Prices	GHG Allowance Prices	High/low sensitivities	High/low sensitivities	High/low sensitivities			
Storage Prices	Li-Ion, flow, etc.	High/low sensitivities	High/low sensitivities	High/low sensitivities			
*Note: Optimal portfolio	will be determined through the capacity ex	xpansion model					

**Note: Zero carbon includes RPS + nuclear + large hydro

Discussion and Q&A

2022 SLTRP: Draft Scenario Matrix Jay Lim, LADWP Manager of Resource Planning Joan Isaacson, Kearns & West, Facilitator

Discussion and Feedback

Do the Draft Scenario Matrix and sensitivities presented by LADWP today capture the full spectrum of the Advisory Group's interests and priorities for the SLTRP process?

Breakout Rooms

- Each room will have SLTRP team member and facilitator/notetaker
- 20 minutes to:
 - Quickly introduce yourselves
 - Identify a volunteer to report back at the end
 - Ask questions and learn more about the scenarios
 - Provide input on what elements that you think are still missing from the scenarios

Remember – Keep the conversations concise and focused in order to make the best use of the time together!

Reporting Back

Provide **<u>two</u>** examples of:

- Questions asked in your group
- Elements identified by your group as still missing from the scenarios

Discussion and Feedback

Do the Draft Scenario Matrix with Sensitivities presented by LADWP today capture the full spectrum of the Advisory Group's interests and priorities for the SLTRP process?

If you selected no, what additional scenarios or elements would bolster the draft scenarios presented by LADWP today?

Advisory Group Meeting Plan

Phase 1 Q3 2021 Launch & Laying Foundation	Phase 2 Q3 2021 Scenario Development	Phase 3 Q4 2021 Modeling	Phase 4 Q1 2022 Results	Phase 5 Q2-3 2022 Outreach
 #1 September 23 Advisory Group Launch LADWP Overview LA100 (Achieving 100% Renewable Energy) 2022 SLTRP Orientation Advisory Group Protocols & Operating Principles 	 #4 October 22 LA100 Equity Strategies Electrification Energy Efficiency Draft Scenario Matrix 	 November-January Internal Modeling Analysis of Scenarios 	#7 February TBD Preliminary Results	#8 July TBD Public Outreach Results
 #2 September 30 LA100 Study Review (NREL) at 9 am LA100 Rates Analysis (OPA) at 10 am LA100 Next Steps (LADWP) LA100 Assumptions (PSRP) Consider Topics for October 22 Consideration of Scenario Definition 	 #5 November 10 Metrics & Evaluation Process Scenario Considerations Implementation & Feasibility Supply Chain Impacts Human Resources Plan Energy Burden Refine Scenario Matrix 	Modeling Underway	March – April TBD Potential field	August Review Draft 2022 SLTRP
 #3 October 08 SLTRP Deep Dive SB100 Review (LADWP) 100% Carbon-Free by 2035 Requirements (NREL) Green Hydrogen in LA (LADWP) 2022 SLTRP Key Considerations and Potential Scenarios 	 #6 November 19 Develop Scenarios Final Scenario Matrix 	Modeling Underway	May – June TBD Community Outreach Meetings	September Submit Final 2022 SLTRP for approval

Wrap Up & Next Meeting

<u>Next Meeting:</u> November 10, 2021 (10 am to 12 pm)

<u>Future Meeting:</u> November 19, 2021 (10 am to 12 pm)

Website: www.ladwp.com/SLTRP Email: powerSLTRP@ladwp.com