

2022 Power Strategic Long-Term Resource Plan (SLTRP) Roadmap to 100% Carbon Free by 2035

SLTRP Advisory Group Meeting #3 October 8, 2021

Meeting Agenda

Joan Isaacson, Kearns & West

- Welcome & Introductions
- Meeting Purpose and Agenda Overview
- California SB100 Joint Agency Report
- LA100 100% carbon free by 2035
- Green Hydrogen in LA
- 2022 SLTRP Key Considerations and Potential Scenarios
- Wrap Up

Website: <u>www.ladwp.com/SLTRP</u> Email: <u>powerSLTRP@ladwp.com</u>

Guides for Productive Virtual Meetings

Use Chat for input OR Raise Hand to join the conversation

Help to make sure everyone gets equal time to give input

Keep input concise so others have time to participate

Actively listen to others, seek to understand perspectives

Offer ideas to address questions and concerns raised by others

Advisory Group Meeting Plan

Phase 1 Q3 2021 Launch & Laying Foundation	Phase 2 Q3 2021 Scenario Development	Phase 3 Q4 2021 Modeling	Phase 4 Q1 2022 Results	Phase 5 Q2-3 2022 Outreach
 #1 September 23 Advisory Group Launch LADWP Overview LA100 (Achieving 100% Renewable Energy) 2022 SLTRP Orientation Advisory Group Protocols & Operating Principles 	 #4 October 22 LA100 Equity Strategies Electrification Energy Efficiency Draft Scenario Matrix 	 November-January Internal Modeling Analysis of Scenarios 	#7 February TBD Preliminary Results	#8 July TBD Public Outreach Results
 #2 September 30 LA100 Study Review (NREL) at 9 am LA100 Rates Analysis (OPA) at 10 am LA100 Next Steps (LADWP) LA100 Assumptions (PSRP) Consider Topics for October 22 Consideration of Scenario Definition 	 #5 October 28 Metrics & Evaluation Process Scenario Considerations Implementation & Feasibility Supply Chain Impacts Human Resources Plan Energy Burden Refine Scenario Matrix 	Modeling Underway	March – April TBD Potential field	August Review Draft 2022 SLTRP
 #3 October 08 SLTRP Deep Dive SB100 Review (LADWP) 100% Carbon-Free by 2035 Requirements (NREL) Green Hydrogen in LA (LADWP) 2022 SLTRP Key Considerations and Potential Scenarios 	 #6 November 19 Develop Scenarios Final Scenario Matrix 	Modeling Underway	May – June TBD Community Outreach Meetings	September Submit Final 2022 SLTRP for approval

Protocols and Operating Principles for Advisory Group

<u>What</u>

A document that establishes: 1) the role of Advisory Group in the SLTRP, 2) general parameters for Advisory Group communication, meetings, etc.

<u>Why</u>

To provide a "road map" for members in order to anticipate involvement and contributions, and to ensure that meetings and overall process are productive for all members.

California Senate Bill 100 Joint Agency Report Jay Lim, LADWP Manager of Resource Planning

The 2021 SB100 Joint Agency Report and Summary Document can be found at: https://www.energy.ca.gov/SB100

Key Takeaways from SB100 Modeling

- This initial analysis suggests SB 100 is technically achievable through multiple pathways.
- Construction of clean electricity generation and storage facilities must be sustained at record-setting rates.
- Diversity in energy resources and technologies lowers overall costs.
- Retaining some natural gas power capacity may minimize costs while ensuring uninterrupted power supply during the transition to 100 percent clean energy.
- Increased energy storage and advancements in zero-carbon technologies can reduce natural gas capacity needs.
- Further analysis is needed.

SB100 Next Steps

Proclamation of a State of Emergency issued by Governor Gavin Newsom on July 30, 2021 September 2021: Report to the Governor on Priority SB100 Actions to Accelerate the Transition to Carbon-Free Energy (Summary of Recommendations):

1) Challenges to Realization of Procurement

- a) Potential Supply Chain and Project Development Impacts
- b) Clean Electricity Generation and Storage Project Permitting Considerations
- c) Transmission Planning, Permitting, and Interconnection

2) Improving Long Term Planning to Support SB100 and Reliability

- a) Analytical Enhancements to Reflect Climate Change Impacts
- b) Adapting State Planning to Support SB100 and Reliability

3) Rate Impacts

a) New Financing Mechanisms and Rate Designs to Address Affordability Impacts

4) Considerations for Long Lead Time Resources

- a) Emerging Resources to Meet Long-Term Reliability Needs
- b) Procurement of Long Lead-Time Resources
- c) Advancing Responsible Offshore Wind Energy Development
- 5) Funding Technology Development and Demonstration
- 6) Maximizing Demand Response and Demand Flexibility
- 7) Regional Markets
- 8) Alignment with Federal Efforts

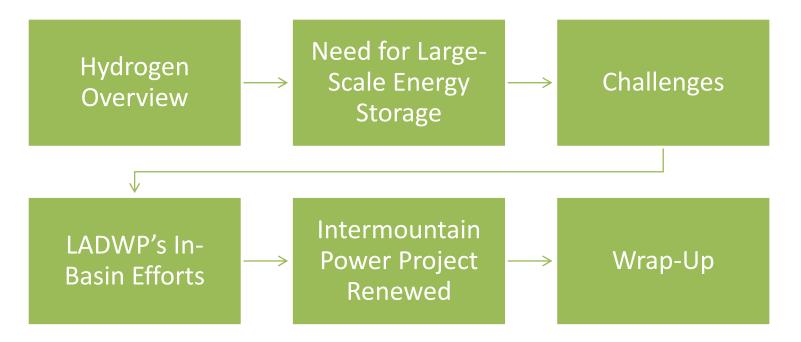
https://www.energy.ca.gov/sites/default/files/2021-09/CEC-200-2021-008.pdf

Discussion and Q&A

LA100 – 100% Carbon Free by 2035 Requirements Dr. Brady Cowiestoll, National Renewable Energy Laboratory

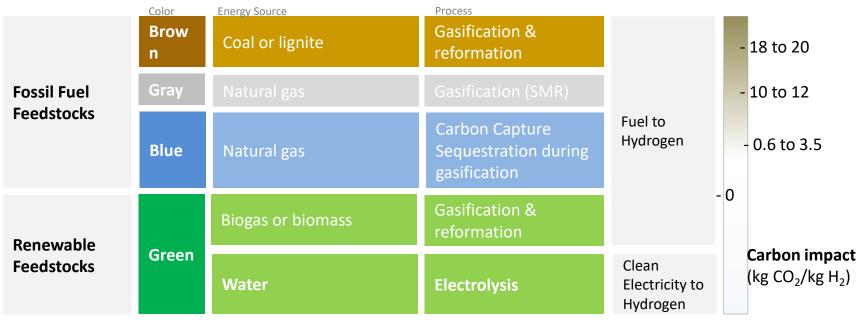
Discussion and Q&A

Green Hydrogen in LA Greg Huynh, LADWP IPP Operating Agent Manager Aaron Guthrey, LADWP Engineer of Generating Station and Facilities Engineering

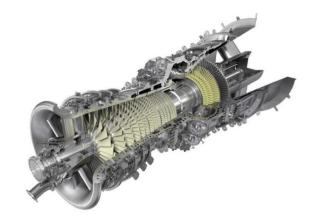

CUSTOMERS FIRST

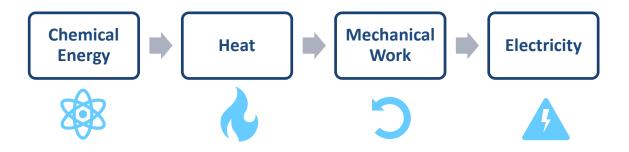
Green Hydrogen: Achieving the Last 10% of Carbon-Free Generation

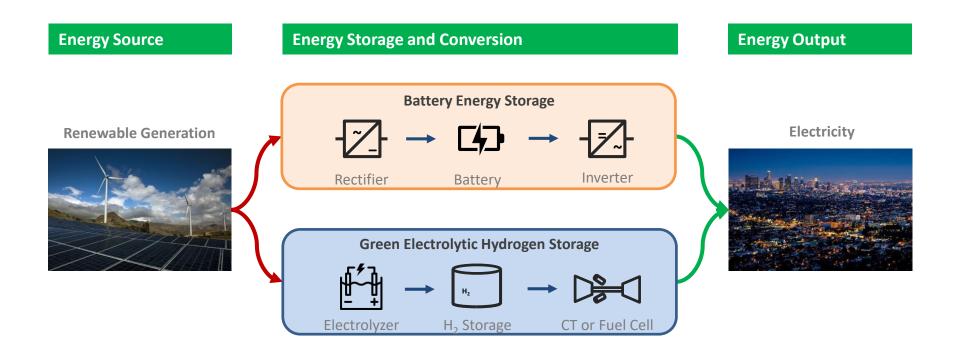
SLTRP Advisory Group Meeting


October 8, 2021

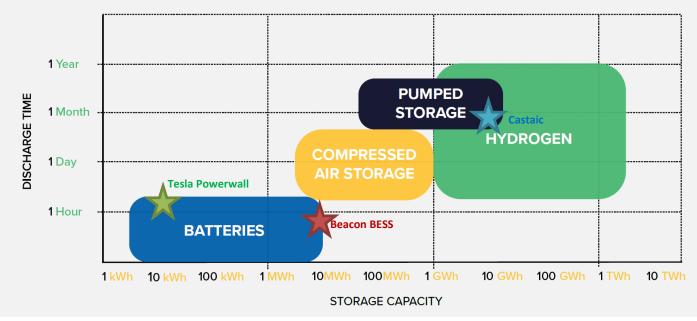
Today's Agenda


Hydrogen and its colors


- Most abundant element in the universe, and forms a colorless, odorless, and tasteless gas
- On Earth, primarily bound in molecules of water or hydrocarbons
 - H₂: Hydrogen gas
 - H₂O: Hydrogen atoms paired with oxygen atom

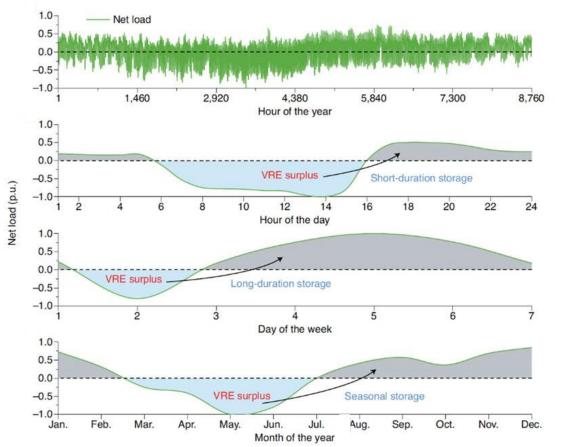

Green Hydrogen: A renewable fuel for gas turbines

- Core technology: jet engine
- Replace fuel: natural gas \rightarrow green hydrogen
- Renewably fueled dispatchable capacity
- Zero carbon emissions
- Technical challenges to be discussed



Green electrolytic hydrogen can be used as an energy storage medium... and unlike batteries can address multi-day and seasonal needs

Bulk Energy Storage

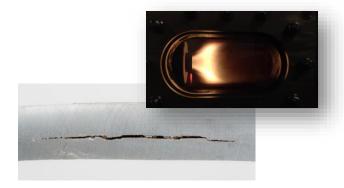

Note: Both axes are logarithmic, meaning multiples along the axes are exponential

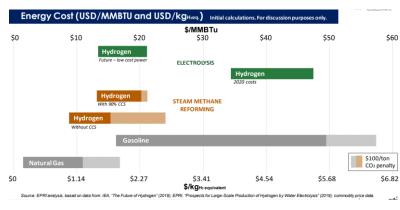
Source: Green Hydrogen Coalition

Hydrogen is a promising solution for multi-day and seasonal energy storage at the grid scale.

Energy Storage Needed at Multiple Scales

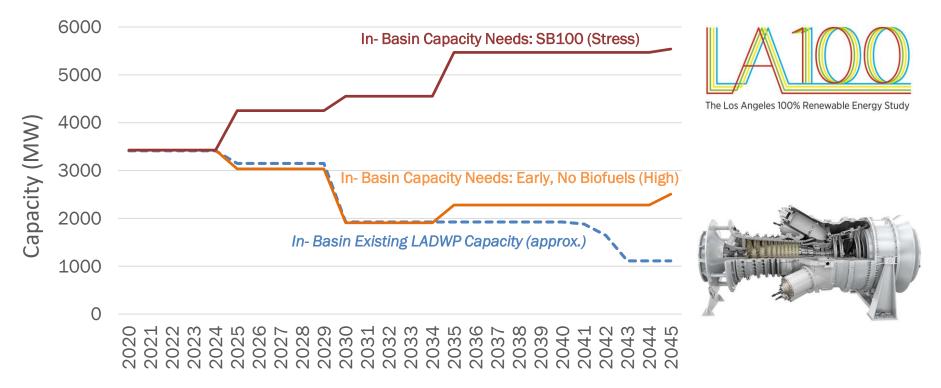
Net Load throughout year


Short-duration storage (hours)


Long-duration storage (days)

Seasonal storage (months)

Challenges with Hydrogen as a Fuel


- Technical
 - Low volumetric energy density requires massive storage volumes
 - Embrittlement
 - Challenging combustion characteristics (flame speed, flashback, stability, flame temperature)
 - Higher combustion NOx may require further abatement
- Logistics and Economics
 - Sourcing green hydrogen at necessary quantities
 - Multi-sector coordination to develop green hydrogen market and achieve scale
 - Cost of green hydrogen is higher than fossil fuel derived hydrogen and 10x higher than natural gas

Changing Needs of In-Basin Generation

LA100: Capacity (MW) of Total In-Basin generation (H2, gas, biofuels), year by year

Transforming In-Basin Generation

- LA100 study identified the need for **dispatchable** capacity at all in-basin generating stations
- **Request for Information** (RFI) will help form the basis of LADWP's in-basin green hydrogen strategy for all in-basin generating stations
 - Scattergood Hydrogen Power Capacity
 - Retrofits to existing natural gas combustion turbines
 - New hydrogen-fired combustion turbines
 - Technologies of Interest as they relate to, hydrogen production, transportation, storage, and end use
 - Safety and environmental stewardship

The Los Angeles 100% Renewable Energy Study

Combustion Green Sustainable Electricity portainable Hydrogenortation Storage RFI

LADWP Hydrogen Request for Information Timeline

July 2021	Q	September 2		•	November 8		Future
Feedback Incorporated: Final RFI revisions completed	5	RFI Q&A Posted			Updated RFI Sub Deadline	omission	Hydrogen Demonstration
			We are here				
• •	•	•	٢	•	•	•	
	RFI Advertised		LADWP Announces 30-Day Extension			Evaluation of R Submittals	FI
C	August 5 2021		September 28			November &	& December

In-Basin Plant Challenges

- Sourcing Renewable Fuel
 - Hydrogen
 - Ammonia
 - Biogas
- Infrastructure Challenges
 - Pipelines
 - Maritime
 - Ocean cooling elimination
- Storage and Backup Fuel
 - Limited available space
 - No local geologic salt dome formations
 - Liquified green fuel challenges
- Retrofits for Existing LADWP Resources
 - F-Class turbine retrofits
 - Aeroderivative turbine retrofits
 - Maintaining generation 24/7 during transition
 - Currently no 100% hydrogen fueled F-Class turbines available

LADWP's Current In-Basin Gas Turbine Fleet

LADWP's Green Hydrogen Request for Information is positioned to receive information on current and future available hydrogen retrofits for the existing fleet

<u>Model</u>	Net Maximum Unit Capacity	Valley GS	Scattergood GS	<u>Haynes GS</u>	<u>Harbor GS</u>		
GE - 7FA	162–206 MW	2	1	2			
GE - LMS100	99.2–102 MW		2	6			
GE - 7EA	73 MW				2		
GE - LM6000	43–47.4 MW	1			5		

*Anticipated changing capacity factors from 30% to 5%

Scattergood Hydrogen Power Capacity

- Capacity at Scattergood is our most immediate need for **system reliability**
- Ocean-cooled units will need to be retired by 2029
- Loss of capacity must be replaced
- Opportunity to **demonstrate** green hydrogen electricity generation in-basin
- RFI will help guide strategy at Scattergood

Global Shared Expertise

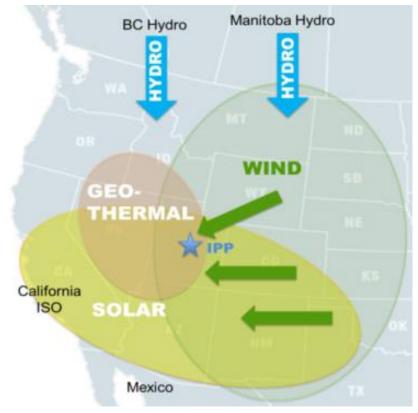
Low Carbon Research Initiative

- Multi-sector collaboration that is coordinated by:
 - Electric Power Research Institute
 - Gas Technology Institute

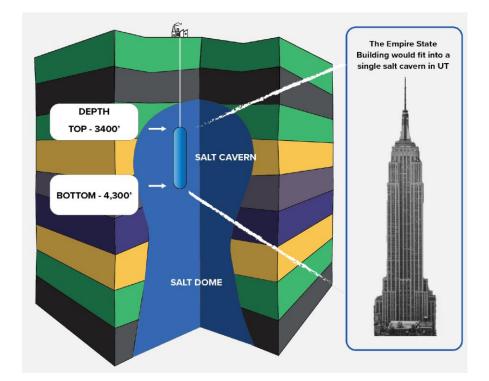
HyDeal LA

- Founded by the Green Hydrogen Coalition
 - Intended to architect a green-hydrogen cluster at scale in the LA area
 - Leveraging lessons being learned in Europe

Alliant Energy	Ameren	AMERICAN ELECTRIC POWER	🗘 aps'	ATMOS .	BLACK & VEATCH	CantarPoint. Energy	ConEdison
Descent for the second	cpso	Dominion Energy	DTE 🦆	DUKE ENERGY. 🗲	Exelon First	nergy FOI	RTIS. 🔞
	LES	LA Sepretation			UBISHI IR Melseniel Fo	national gr	rid Second Field Free Dates
Authority	NiSource	NOMAC .	NW Natural'	Ogethorps Pow	· <u>DPPD</u>		ppl
	EDISON	SaCalSee Souther		TEPCO	TRI STATE	WEC Every Orcup	2 Xcel Energy


Intermountain Power Project (IPP): Renewed

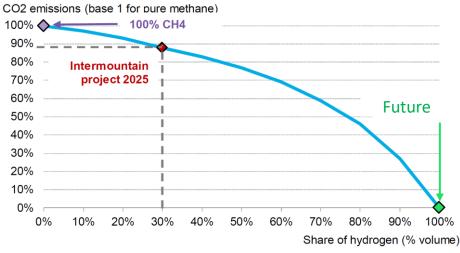
- Background
 - Located in Delta, Utah
 - Coal-fired with 1,800 MW net capacity
 - Commissioned in 1986
- IPP Renewed*
 - Retire existing coal units by 2025
 - Construct 840 MW units by 2025
 - Provides dispatchable energy to maintain reliability and support HVDC transmission
 - Increase renewables
 - Green hydrogen production and long-term storage


Utah's Renewable Hub

- Intermountain sits in a confluence of renewable resources
- Currently interconnected about 400 MW of wind generation and geothermal
- 2,300 MW of current solar interconnection requests in queue
- Seeking 1,500 MW of Wyoming wind interconnects
- Considered the "Western Renewable Energy Hub"

Salt Domes at Intermountain: A Unique Opportunity

- Underground salt domes beneath
 Intermountain
- Suitable for storing green hydrogen
- Created by solution mining
- 1 cavern = 5,500 tons H₂ storage
 - Equivalent to 1 million fuel cell cars
- Over 100 caverns possible near Intermountain
- Allows for seasonal shifting of energy storage



Green Hydrogen at Intermountain: Capabilities

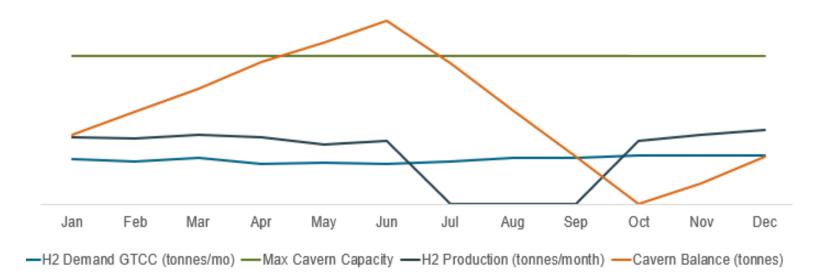
- Two MHPS M501 JAC gas turbines
 - Combined cycle configuration
 - Two '1 x 1' power trains

- Hydrogen-fueled capabilities:
 - 30% H₂ in 2025
 - 100% H₂ in future

Source: Bloomberg New Energy Finance

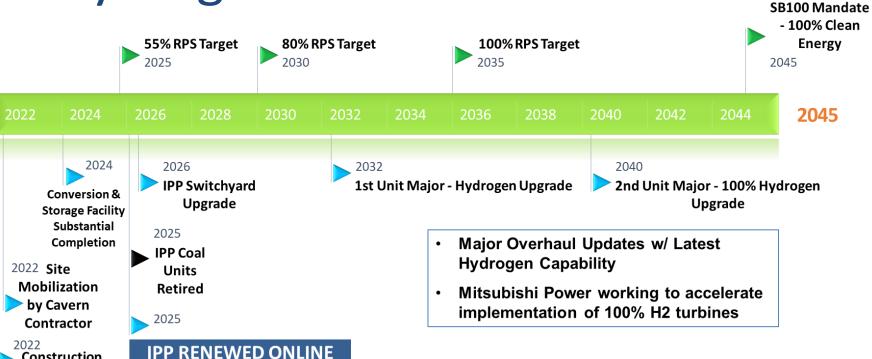
Future Proofing for H2

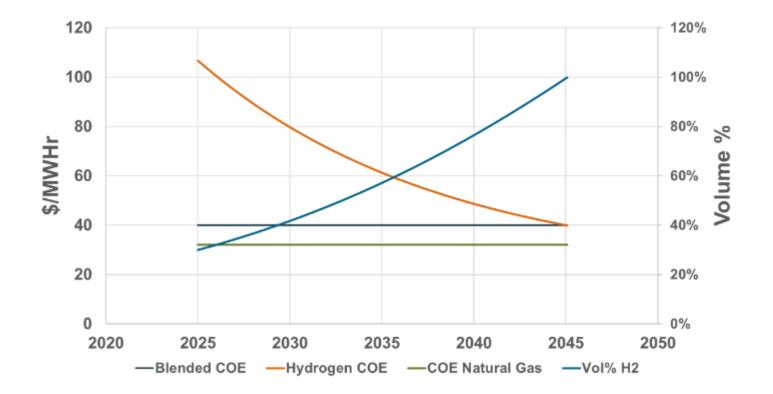
- What's needed to get to 100%
 - Combustor technology development
 - Modifications to Balance of Plant equipment
 - Infrastructure to support 100% Hydrogen
- What we're doing today
 - Plant layout designed for installation of future H2 equipment
 - Installation of flexible green H2 and natural gas fuel mixing systems
 - Designing the systems to lower the life cycle costs of transition to 100% H2


Current State of Technology

- Current combustor technology can support stable operation up to 30% at this scale
- High concentrations of hydrogen presents challenges with:
 - NOx Emissions
 - Flashback
 - Flame Stability
- Improvements in the Heat Recovery Steam Generator can help reduce NOx emissions below regulatory limits
- Major R&D investments are being made to improve performance and prevent component damage

Multi Cluster Combustor (ETN Global)


Projected IPP 30% Hydrogen Operating Profile


IPP Hydrogen Timeline

2022

Construction Start

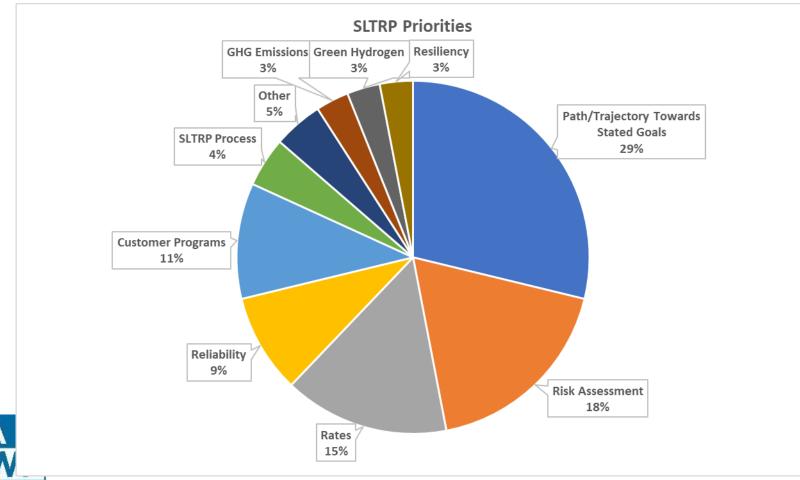
Cost of Electricity (COE) Over Time for an Increasing Blend of Green Hydrogen

Next Steps for IPP Renewed

- Green Hydrogen Fuel Supply
 - Complete 30% hydrogen volume negotiations with 3rd-Party November 2021
 - A Multi-Stage RFP was submitted by the Intermountain Power Agency in June 2020
 - Stage 1 responses received and evaluated
 - Stage 2 scheduled to be advertised in July 2022
 - Anticipated award of Hydrogen Supply Project agreement by December 2023

Summarizing Thoughts

- Green hydrogen provides a potential pathway for renewably fueled dispatchable generation
- Challenges: cost, sourcing for needed hydrogen quantities, infrastructure development, technical challenges (NOx control, embrittlement, combustion characteristics, etc.)
- Industry is focusing on safety of hydrogen to ensure reliable operation while also protecting personnel
- Green hydrogen Request for Information will inform the market potential for green hydrogen in the LA Basin and provide input into the Strategic Long Term Resource Plan
- Unique resources at Intermountain provides an opportunity to demonstrate green hydrogen as an energy storage system


Discussion and Q&A

2022 SLTRP: Key Considerations and Potential Scenarios Joan Isaacson, Kearns & West Jay Lim, LADWP Manager of Resource Planning

Summary of Feedback From Advisory Group

Response Topics

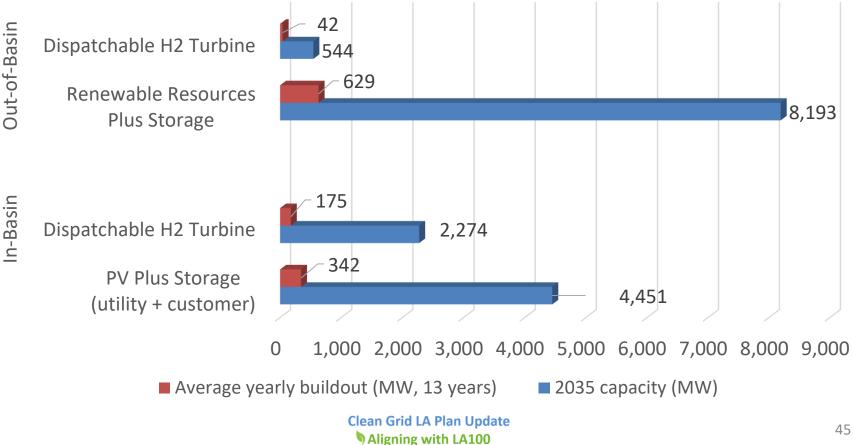
						Climate			
Path/Trajectory Towards						Change/GHG			
	Risk Assessment	Rates	Reliability	Customer Programs		Emissions	Green Hydrogen	Resiliency	Other
						The entire lifecycle			
					Preliminary results	(including methane	Perhaps green		
				LADWP should	should be sent out	· •	hydrogen should	Ability to	Impacts on
				aggressively pursue	prior to AG	transportation) of	be implemented		transmission
			Contingency planning		·	GHG emissions		natural	capacity
Pilot programs should be	Is the timeline set forth to	Rates should remain	for emergencies	such as EE, DERs, and	enough time to	should be	minimize rate	disasters should	should be
considered.	achieve goals realistic?	affordable.	should be considered.	electrification.	review.	considered.	impacts.	be considered.	provided.
					Would the				
		Consideration should			recommended		All impacts		
		be given to			scenario be one		related to green		
Annual targets for		maintaining	Scenarios should		the AG creates, or	GHG emissions	hydrogen should		
renewables and fuel		affordability to middle	strike a balance	LADWP should recruit	would it be NREL's	reductions should	be considered		
switching should be	Are the goals	and lower-income	between affordable	customers for multi-	(or some other	be made as soon as	(e.g., cost,		
established.	technologically feasible?	households.	rates and reliability.	day DR programs.	entity)?	possible.	availability, etc.)		
						Focus more on EV			
		More information on				adoptions since the	2		
Realistic goals should be		how rates will impact	Distribution			transportation			
established based on past		LADWP's balance sheet	overloads and how to	Customers should		sector accounts for			
experience with large	Will long-term weather	and cash flow should	mitigate them should	have multiple DR		the most GHG			
construction projects.	patterns be considered?	be provided.	be considered.	options.		emissions.			
		How can we improve							
		customer trust,							
		particularly as it		Given LA's building					
	An analysis of risks that	relates to rates and		density, DERs should					
How will PPAs be structured	may hinder achievement	the notion that this		leverage existing					
to minimize environmental	of goals should be	may be politically		infrastructure when					
impacts?	performed.	motivated?		feasible.					

Response Topics (continued)

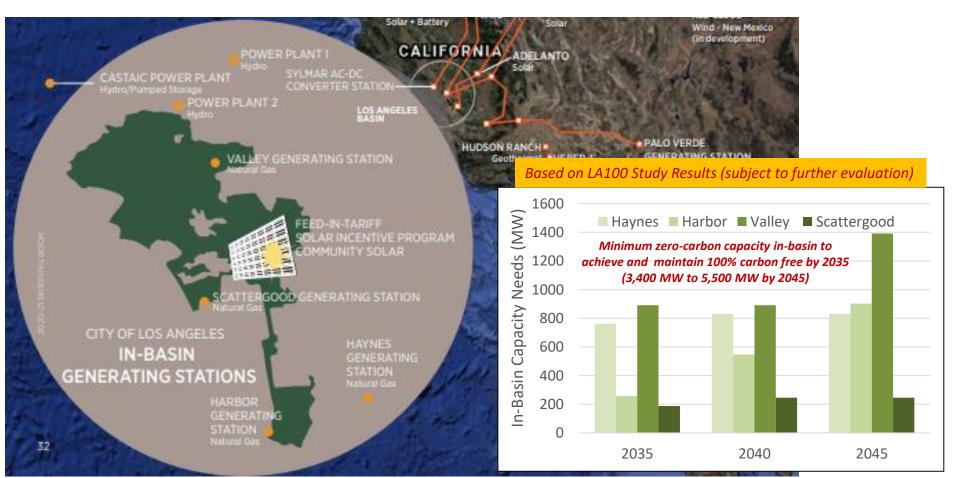
4	1		1	1	i	i	1	1	
						<u>Climate</u>			
Path/Trajectory Towards						Change/GHG			
Stated Goals	Risk Assessment	Rates	<u>Reliability</u>	Customer Programs	SLTRP Process	Emissions	Green Hydrogen	Resiliency	<u>Other</u>
	Environmental permitting								
A concise set of scenarios	and resource availability								
should be presented.	should be considered.								
A rationale regarding the	LADWP should ensure								
recommended technology	they have adequate								
resource mix should be	internal resources (e.g.,								
provided	staffing).								
	A review of internal								
	proceedures should be								
Early EV adoption and later	conducted in order to								
renewables build-out should	streamline procurement								
be considered.	processes.								
Allowable fuel and	Uncertainty in renewable								
renewable technologies	energy production should								
should be clearly stated.	be addressed.								
Bold steps implementing									
some new technology may	Investments should								
help in achieving goals.	enhance optionality.								
Diversity in technology and									
strategies should be									
considered.									

2022 Power Strategic Long-Term Resource Plan (SLTRP) Key Considerations to 100% Carbon Free

Environment and Equity Reliability and Resiliency Affordability and Rate Impacts


Implementation Risks

- Build Rates and Deployment
- Local Capacity Requirements
- Reliance on Emerging Technologies
- Permitting Timeline
- Workforce Development



LA100's 100% Carbon Free 2035 Scenario **Required Yearly Buildouts (MW)**

Role of In-Basin Capacity for the Last 10% Carbon Free

Potential 2022 SLTRP Scenarios

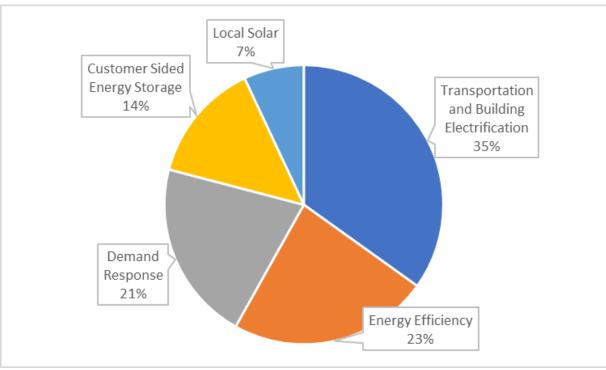
1) Reference: SB100 (60% RPS by 2030, 100% zero-carbon by 2045 based on sales)

- **2)** Balanced Decarbonization: 80% RPS by 2030, 100% RPS by 2035 based on sales, 100% carbon free by 2040/2045 (last 10%) based on technology maturity and implementation roadmap
- 3) City Council Motion: 80% RPS by 2030, 100% carbon-free by 2035 based on generation

While evaluating Local capacity requirements

Sensitivities:

- *a) High Transportation and Building Electrification Loads*
- b) Low/High Fuel Prices
- c) Low/High Energy Storage Prices


SLTRP Polling & Discussion (Kearns & West)

10-minute questionnaire for all Advisory Group members Thank you for your input!

Poll Results

The SLTRP process typically analyzes various programs and projects as part of its resource mix. What types of programs are you interested in and would like to learn more about at the upcoming 10/22 meeting?

Advisory Group Meeting Plan

Phase 1 Q3 2021 Launch & Laying Foundation	Phase 2 Q3 2021 Scenario Development	Phase 3 Q4 2021 Modeling	Phase 4 Q1 2022 Results	Phase 5 Q2-3 2022 Outreach	
 #1 September 23 Advisory Group Launch LADWP Overview LA100 (Achieving 100% Renewable Energy) 2022 SLTRP Orientation Advisory Group Protocols & Operating Principles 	 #4 October 22 LA100 Equity Strategies Electrification Energy Efficiency Draft Scenario Matrix 	November-January Internal Modeling Analysis of Scenarios 	#7 February TBD Preliminary Results	#8 July TBD Public Outreach Results	
 #2 September 30 LA100 Study Review (NREL) at 9 am LA100 Rates Analysis (OPA) at 10 am LA100 Next Steps (LADWP) LA100 Assumptions (PSRP) Consider Topics for October 22 Consideration of Scenario Definition 	 #5 October 28 Metrics & Evaluation Process Scenario Considerations Implementation & Feasibility Supply Chain Impacts Human Resources Plan Energy Burden Refine Scenario Matrix 	Modeling Underway	March – April TBD Potential field	August Review Draft 2022 SLTRP	
 #3 October 08 SLTRP Deep Dive SB100 Review (LADWP) 100% Carbon-Free by 2035 Requirements (NREL) Green Hydrogen in LA (LADWP) 2022 SLTRP Key Considerations and Potential Scenarios 	 #6 November 19 Develop Scenarios Final Scenario Matrix 	Modeling Underway	May – June TBD Community Outreach Meetings	September Submit Final 2022 SLTRP for approval	

Wrap Up & Next Meeting

<u>Next Meeting:</u> October 22, 2021 (10 am to 12 pm)

<u>Future Meeting:</u> October 28, 2021 (10 am to 12 pm)

Website: www.ladwp.com/SLTRP Email: powerSLTRP@ladwp.com ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

LA100 Equity Strategies Dr. Patricia Romero Lankao, National Renewable Energy Laboratory

Discussion and Q&A

