

OTC Study Update

November 15, 2018 – 100% RE Advisory Group Benjamin J. Hwang Don Morrow

EcoNomics

Draft and Preliminary

Contents

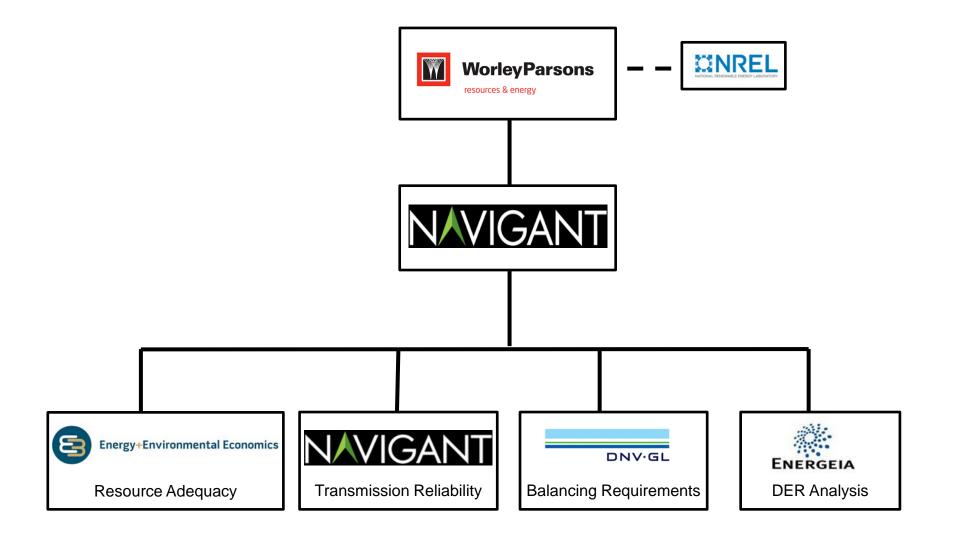
Scope

- Methodology
- Funnel Process
- Final Cases
- Metrics of Final Cases
- Key Insights
- Weightings of Metrics

Study Scope and Objective

Holistic system analysis and evaluation of alternatives to LADWP's 2016 IRP OTC repowering plan

- Third party, independent study
- Maintains system reliability through 2036
- Evaluates all non-emitting, proven alternatives
- Adopts and expands on the 2016 IRP Recommended Case (excluding OTC repowering) and Ten-Year Transmission Plan
 - Adopts 2016 IRP Load Profile with 580,000 EVs
 - Additional 160MW load for Port of LA electrification
 - Additional 75MW load for LAX expansion
- Evaluates the cost associated with various alternatives
- Provides key insights


DRAFT & CONFIDENTIAL

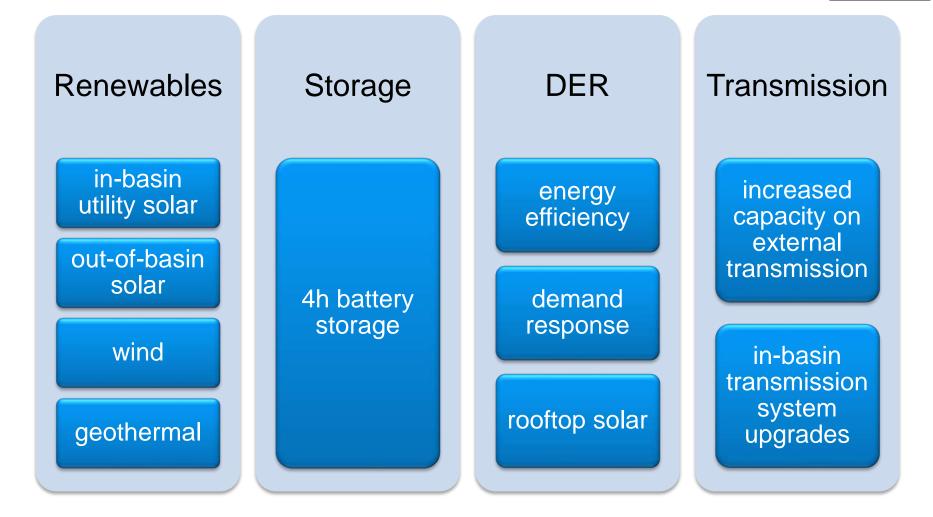
WorleyParsons

Study Organization Chart

F

Initial Repowering Projects

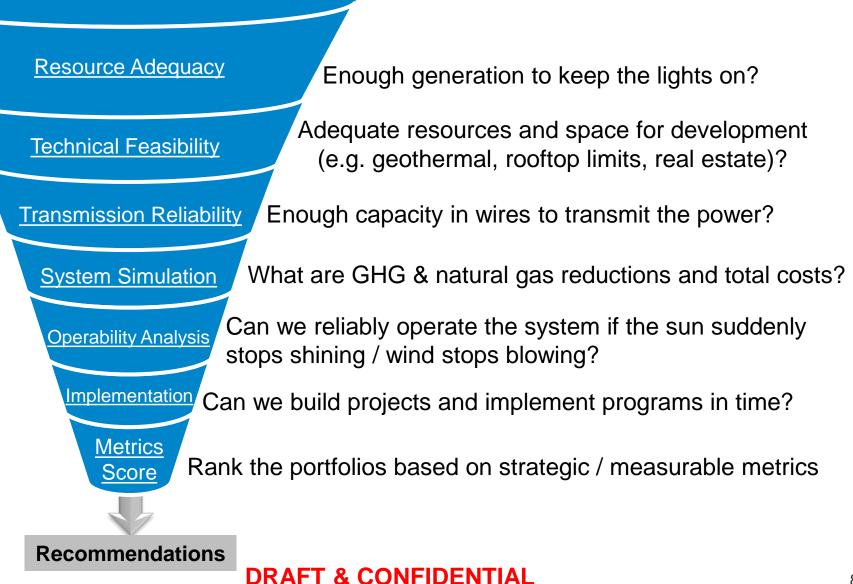
	Existin	g Units		LADWP Repowering Strategy					
Unit Designation	Nameplate	Net Dependable	OTC Compliance Deadlines	Unit Designation	Technology	Capacity (net MW)	Net Dependable Capacity (MW)		
Scattergood 1	185	131	12/31/2024	Scattergood	1 - CCCT Small F/G Class 1x1 Dry	346	337		
Scattergood 2	185	131	12/31/2024	8,9		540	337		
Haynes 1	230	217		Haynes	1 - CCCT Small				
Haynes 2	230	217	12/31/2029	17,18	F/G Class 1x1 Dry	346	337		
Haynes	590	563	12/31/2029	Haynes 19,20	1 - CCCT Small F/G Class 1x1 Dry	346	337		
8, 9 & 10	590	505	12/31/2029	Haynes 21,22	1 - CCCT Small F/G Class 1x1 Dry	346	337		
Harbor 1, 2 & 5	246	215	12/31/2029	Harbor 15,16,17	CCCT Mid Aero 2x1 Dry	251	245		



Study Scenarios

	Study Scenarios											
Scenario	OTC Units Retired	Retired Gas Capacity (MW)	Repowered Gas Capacity (MW)									
А	None	0	1,635									
В	HAR	-245	1,390									
С	SCAT	-326	1,298									
D	HAYx1	-460	1,298									
E	HAR, SCAT	-571	1,053									
F	HAYx2	-630	943									
G	HAYx3	-1,090	597									
Н	HAR, HAYx3	-1,335	346									
I	SCAT, HAYx3	-1,416	251									
J	All OTC Units	-1,661	0									

Final Resource Alternatives Considered


Other resources were considered but excluded due to technology maturity, construction timing, and GHG emissions

DRAFT & CONFIDENTIAL

WorleyParsons

NAVIGAN

Study Methodology

WorleyParsons

JAVIGANI

Resource Adequacy

Evaluation Process

Gas retirement scenarios (columns)

Non-emitting resource alternatives (rows)

Gas Projects Retired		None	HAR	SCAT	HAY 1,2	SCAT & HAR	HAY 8,9,10	HAY	HAY & HAR	HAY & SCAT	All OTC Units
Gas Reduction (MW)		0	-245	-326	-460	-571	-630	-1,090	-1,335	-1,416	-1,661
Gas Repowered (MW)		1,635	1,390	1,298	1,298	1,053	943	597	346	251	0
Resource Alternatives		А	В	С	D	E	F	G	Н	I	J
Solar, Wind	1	Ъ									
Solar, Wind, Geo	2	E C									
ES	3	016									
EE, DR	4	0 2									
Transmission (Tx)	5	1 g L									
Solar, ES	6	rdii									
Solar, ES, EE, DR	7	000									
Solar, ES (24 hr), EE, DR	8	تة u									
ES, Tx	9	uli Li									
Solar, Wind, ES, Tx	10	3ase									
Geo, Tx	11	D D									
Solar, Wind, Geo, Tx	12	ate									
Solar, Wind, ES, Geo, Tx	13	Calibrated Baseline according to 2016 IRP									
Solar, Wind, ES, Geo, EE, DR, Tx	14	Са									

Resource Adequacy

Does not pass resource adequacy requirements Passes resource adequacy requirements

Gas Projects Reduced	None	HAR	SCAT	HAY 1,2	SCAT & HAR	HAY 8,9,10	HAY	HAY & HAR	HAY & SCAT	All OTC Units
Gas Reduction (MW)	0	-245	-326	-460	-571	-630	-1,090	-1,335	-1,416	-1,661
Gas Repowered (MW)	1,635	1,390	1,298	1,298	1,053	943	597	346	251	0
Resource Alternatives	А	В	С	D	Е	F	G	Н	I	J
Solar, Wind 1	<u>م</u>									
Solar, Wind, Geo 2	е В В В									
ES 3	2016 IRP									
EE, DR 4	to 7									
Transmission (Tx) 5	ъ									
Solar, ES 6	ordi									
Solar, ES, EE, DR 7										
Solar, ES (24 hr), EE, DR 8	e									
ES, Tx 9	elin									
Solar, Wind, ES, Tx 10	3as									
Geo, Tx 11	ed E									
Solar, Wind, Geo, Tx 12	rate									
Solar, Wind, ES, Geo, Tx 13	Calibrated Baseline according to									
Solar, Wind, ES, Geo, EE, DR, Tx 14	Ca									

Resource Adequacy

Technical Feasibility

Recommendations

Does not pass technical feasibility requirements Passes technical feasibility requirements Did not pass previous requirements

Gas Projects Reduced	None	HAR	SCAT	HAY 1,2	SCAT & HAR	HAY 8,9,10	ΗΑΥ	HAY & HAR	HAY & SCAT	All OTC Units
Gas Reduction (MW)	0	-245	-326	-460	-571	-630	-1,090	-1,335	-1,416	-1,661
Gas Repowered (MW)	1,635	1,390	1,298	1,298	1,053	943	597	346	251	0
Resource Alternatives	А	В	С	D	E	F	G	Н	I	J
Solar, Wind	1 4									
Solar, Wind, Geo	2 4 9									
ES	3 201									
EE, DR	4 Q									
Transmission (Tx)	5 <u>ພິ</u>									
Solar, ES	⁶ ordi									
Solar, ES, EE, DR	7 22									
Solar, ES (24 hr), EE, DR	8 U									
ES, Tx	elin 6									
Solar, Wind, ES, Tx	ase oi									
Geo, Tx										
Solar, Wind, Geo, Tx	l2 gte									
Solar, Wind, ES, Geo, Tx	Calibrated Baseline according to 2016 IRP									
Solar, Wind, ES, Geo, EE, DR, Tx	14 Ü									

Cases for Analysis Transmission Reliability, System Simulation, and Operability

WorleyParsons resources & energy NAVIGANT DNV-GL ENERGEIA Energy-Environmental Economics

I-XII Case identifier

Transmission Reliability

System Simulation

Operability Analysi

mplementatio

Metrics Score

Recommendations

Future analysis as needed

Did not pass previous requirements

SCAT HAY HAY All OTC **Gas Projects Reduced** HAY 8,9,10 HAR SCAT **HAY 1.2** HAY None & HAR & HAR & SCAT Units Gas Reduction (MW) 0 -245 -326 -460 -571 -630 -1,090 -1.335-1,416 -1.661 Gas Repowered (MW) 1,635 1,390 1,298 1,298 1,053 943 597 346 251 0 **Resource Alternatives** А В С D Е F G н Т Solar, Wind 1 Calibrated Baseline according to 2016 IRP 2 Solar, Wind, Geo IV TTI TT 3 ES EE. DR 4 5 Transmission (Tx) 1 Solar. ES 6 7 Solar, ES, EE, DR 8 Solar, ES (24 hr), EE, DR 9 ES, Tx Solar, Wind, ES, Tx 10 11 Geo, Tx 12 Solar, Wind, Geo, Tx Solar, Wind, ES, Geo, Tx 13 Solar, Wind, ES, Geo, EE, DR, Tx 14

Summary of 12 Cases

Case Identifier	Eliminated Gas Repowering	Replaced with Resource Alternatives
Ι	Retire 245 MW at Harbor	Energy Storage
II	Retire 326 MW at Scattergood	Energy Storage
III	Retire 460 MW at Haynes	Energy Storage
IV	Retire 245 MW at Harbor Retire 326 MW at Scattergood	Energy Storage
V	Retire 630 MW at Haynes	Energy Storage
VI	Retire 630 MW at Haynes	Energy Storage, Solar, DR, and EE
VII	Retire 1,090 MW at Haynes	Energy Storage, Solar, DR, and EE
VIII	Retire 1,090 MW at Haynes	Energy Storage, Solar, DR, and EE, Wind, Geothermal, and External Transmission
IX	Retire 1,090 MW at Haynes Retire 245 MW at Harbor	Energy Storage, Solar, DR, and EE, Wind, Geothermal, and External Transmission
X	Retire 1,090 MW at Haynes Retire 326 MW at Scattergood	Energy Storage, Solar, DR, and EE, Wind, Geothermal, and External Transmission
XI	Retire 1,661 MW at Haynes, Harbor, and Scattergood	Energy Storage, Solar, Wind, Geothermal, and External Transmission
XII	Retire 1,661 MW at Haynes, Harbor, and Scattergood	Energy Storage, Solar, DR, EE, Wind, Geothermal, and External Transmission

Transmission Upgrades Required for Cases I-IV

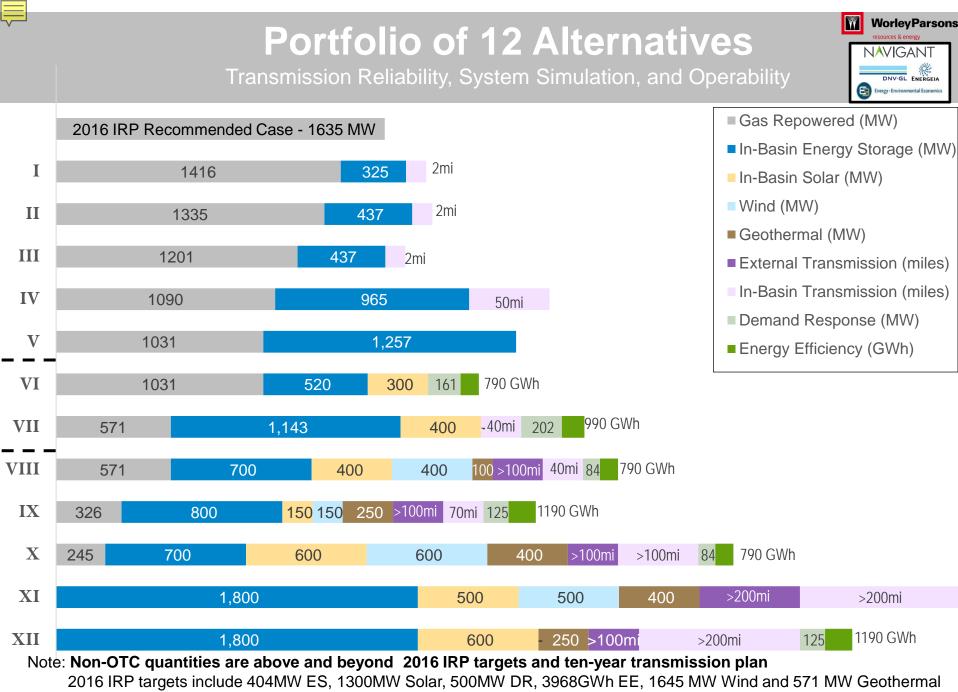
I-XII Case identifier

Transmission Reliability

System Simulation

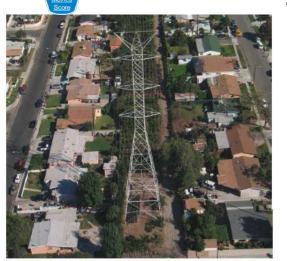
Operability Analysi

nplementatio


Metrics Score

Recommendations

Future analysis as needed


Did not pass previous requirements

Gas Projects Reduced	None	HAR	SCAT	HAY 1,2	SCAT & HAR	HAY 8,9,10	НАҮ	HAY & HAR	HAY & SCAT	All OTC Units
Gas Reduction (MW)	0	-245	-326	-460	-571	-630	-1,090	-1,335	-1,416	-1,661
Gas Repowered (MW)	1,635	1,390	1,298	1,298	1,053	943	597	346	251	0
Resource Alternatives	А	В	С	D	E	F	G	Н	I	J
Solar, Wind	1 d									
Solar, Wind, Geo	2 42 9									
ES	2016 IRP	Ι	II	III	IV					
EE, DR	4 Q									
Transmission (Tx)	5 BU									
Solar, ES	e of									
Solar, ES, EE, DR	7 000						۷II ۱			
Solar, ES (24 hr), EE, DR	8 U	i					<u>,</u> 1			
ES, Tx	9 (alin									
Solar, Wind, ES, Tx	10 gase	Ι			IV					
Geo, Tx	1 1 0 6 8 2 9 5 7 1 1 0 6 8 2 9 5 7 1 1 0 6 8 2 9 5 7 1 1 1 0 6 8 2 9 5 7 1 1 1 1 6 8 2 9 5 1 1 1 1 6 8 2 9 5 1 1 1 6 8 2 9 5 1 1 1 1 6 8 2 9 5 1 1 1 1 6 8 2 1 1 1 1 1 6 8 2 1 1 1 1 6 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Solar, Wind, Geo, Tx	12 gte									
Solar, Wind, ES, Geo, Tx	13 <u>q</u>									
Solar, Wind, ES, Geo, EE, DR, Tx	14 O							IX	X	XII

Implementation Risk Analysis

Transmission Project Challenges

- Environmental Assessment process (CEQA, NEPA)
- Long project and construction durations
- Land acquisition & easements
- Community impacts (NIMBY, Local Permits)
 - Westside, San Fernando valley, mid-City

Energy Storage Challenges

- Limited space at LADWP sites (site acquisition costs)
 - 1.6 acres required for 100MW (~1¼ football fields)
- Uncertainty with fire safety codes
- Environmental / building / noise permits
- Chemical disposal at end of life
 DRAFT & CONFIDENTIAL

Implementation Risk Analysis

Home Energy Improvement Program

EE / DR Achievability

- Predicting customer participation
- Disproportionate participation across customer base

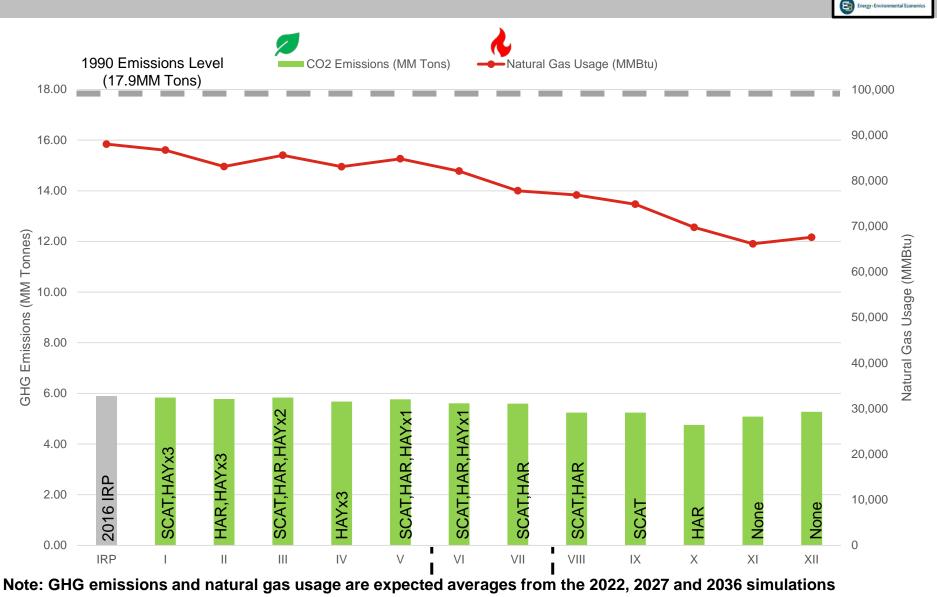
Geothermal Resources Access

- Limited availability: Nevada, California
- Transmission access near resources
- High cost versus other renewables

In-basin Solar Challenges

- Limited usable rooftops
- Permitting for floating solar on reservoirs
- Disproportionate participation across customer base

Model Output Metrics



Ref to Academ Connectation Metrics Score	Sub-Category	Legend	Description
Environmental	Green House Gas Emission Reductions		Average GHG reduction over 20 years
Impact	Natural Gas Use Reductions		Average natural gas usage over 20 years
	Implementation Risk, e.g. construction and customer EE/DR	*	Ability to complete all projects through construction and implement customer programs
Development Risk	Technology Risk	8	Maturity of the proposed technologies, especially utility scale energy storage and DERMS
	Outage Scheduling Risk		Ability to obtain necessary system outages to bring projects on-line into the system
Organizational	Organizational Risk	ŤŤŤŤ	Changes in the organization structure, business processes, and decision making
Costs	Total Cost	\$	NPV* over Base Case Scenario

*NPV does not include financial analysis of financing costs or reduced revenue through energy efficiency

Environmental Benefits

GHG Reductions and Natural Gas Reductions

DRAFT & CONFIDENTIAL

WorleyParsons

J**A**VIGAN'

* 8

🛠 🖗

Π

III

IV

V

VI

VII

VIII

IX

Χ

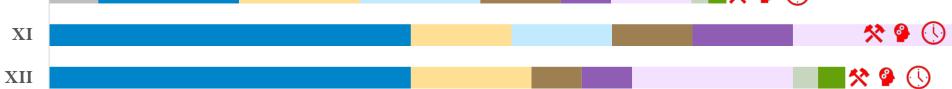
HAR, HAY_x3

HAY_x3

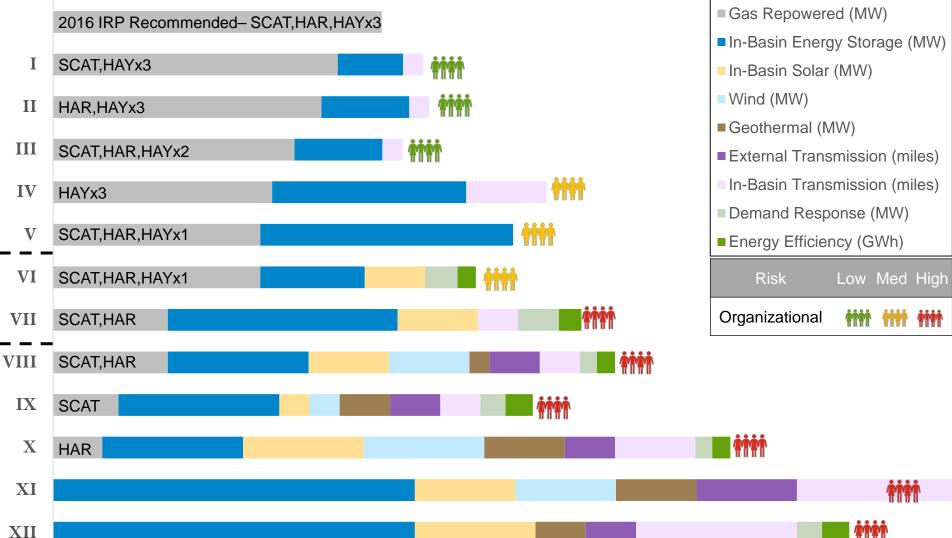
SCAT, HAR, HAYx2

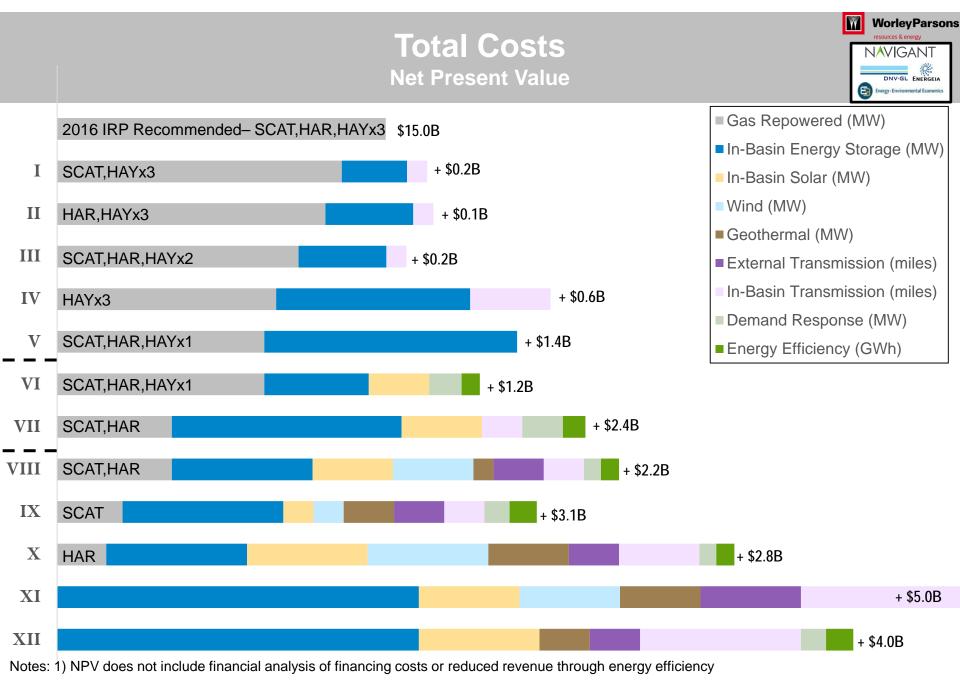
SCAT, HAR, HAYx1

Wind (MW)


- External Transmission (miles)
- In-Basin Transmission (miles)
- Demand Response (MW)
- Energy Efficiency (GWh)

* 🤗


🛠 🔮 🕔


 (\mathbf{i})

Organizational Risk Assessment

Insights from the Study

- Solar or wind alone doesn't satisfy the resource adequacy objectives
- Energy storage must be paired up with renewable PPAs
- Number of transmission upgrades increase with higher levels of non-emitting alternatives
- Utilization of remaining, non-OTC gas units increases as more gas repowering projects are eliminated
- All cost estimates are more expensive than 2016 IRP repowering plan
- Increasing complexity of resource portfolios adds risks* such as organizational change
 *Diversification of resources from these alternatives increase cybersecurity exposure versus a single repowering project

Haynes Repowering Assessment

- Best opportunity to replace some or all repowering projects
 - Relatively high levels of environmental benefit
 - Replacing two projects at Haynes-only achieves meaningful GHG savings over IRP (Cases V and VI)
 - Transmission development is reduced
 - Replacing two combined cycle projects does not require transmission upgrades
 - Development risks are better managed due to site access and timing
 - $_{\odot}$ Location has the ability to support up to 800 MW of Storage
 - Later time period allows for further refinement of energy storage designs and critical software to control DR such as DERMS
 - Costs are moderately higher than the IRP
 - Replacing two projects at Haynes-only is about 10% higher than the IRP (Cases V and VI)
 - Costs increase substantially when used in combination with eliminating other repowering projects

WorleyParsons resources & energy NAVIGANT DNV-GL ENERGEIA Strary-Environmental Economics

Potential to replace the repowering project

- Critical location on system, necessary to support Port of LA electrification and large industrial customers
- Least environmental impact if only reduce Harbor repower (Case I)
- Limited space for energy storage on site
- Scattergood + Harbor elimination results in a high amount of transmission projects (Case IV)
- Eliminating Harbor repowering alone is 2nd lowest cost alternative assessed (Case I)
 - Costs increase substantially when used in combination with eliminating other repowering projects

Scattergood Repowering Assessment

- Least opportunity / highest risk to replace the repowering project
 - Critical location on system, necessary to support LAX expansion and local reliability
 - Relatively high environmental impact of single site options due to earliest use of non-emitting resources (Case II)
 - Highest development risks, including regulatory and permitting risks
 - $\circ\,$ Real estate acquisition for energy storage is among highest risks identified
 - Utility-scale energy storage (100MW) still in development stage, but will require to be in service within 4 to 5 years
 - Scattergood + Harbor elimination results in a high amount of transmission projects (Case IV)
 - Eliminating Scattergood alone is lowest cost (Case II)
 - Development delays could increase costs
 - Costs increase substantially when used in combination with eliminating other repowering projects

DRAFT & CONFIDENTIAL

WorlevParsons

Resource increase above IRP

W	WorleyParson
	resources & energy
1.5	*
	DNV-GL ENERGEIA
6	Energy Environmental Economics

Case ID	Gas Repowered (MW)	Gas Delta	In-Basin Energy Storage (MW)	ES Delta	In-Basin Solar (MW)	Solar Delta	Demand Response (MW)	DR Delta	EE (GWh)	EE Delta	Wind (MW)		Geo (MW)	Geo Delta
2016 IRP	1661		404		1300		500		3968		1645		571	
Ι	-245	-15%	325	80%										
II	-337	-20%	437	108%										
III	-460	-28%	437	108%										
IV	-571	-34%	965	239%										
V	-630	-38%	1,257	311%										
VI	-630	-38%	520	129%	300	23%	161	32%	790	20%				
VII	-1090	-66%	1,143	283%	400	31%	202	40%	988	25%				
VIII	-1090	-66%	700	173%	400	31%	84	17%	790	20%	400	24%	100	18%
IX	-1335	-80%	800	198%	150	12%	125	25%	1,185	30%	150	9%	250	44%
X	-1416	-85%	700	173%	600	46%	84	17%	790	20%	600	36%	400	70%
XI	-1661	-100%	1,800	446%	500	38%					500	30%	400	70%
XII	-1661	-100%	1,800	446%	600	46%	125	25%	1,185	30%			250	44%

Ranking Metrics / Metric Weights

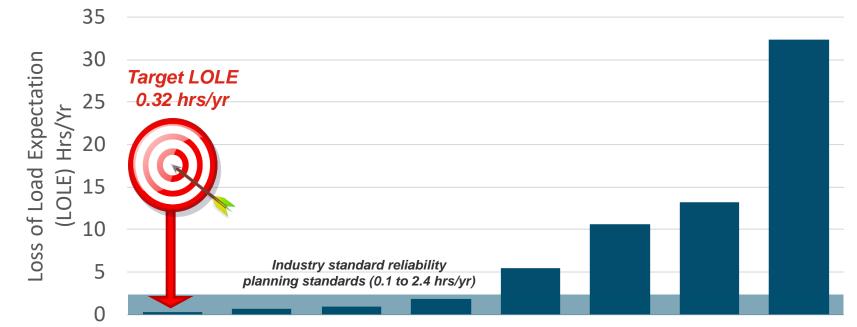
Category	Category Weight	Sub-Category	Legend	Description
Environmental	45%	Green House Gas Emission Reductions		Average GHG reduction over 20 years
Impact	45 %	Natural Gas Use Reductions		Average natural gas usage over 20 years
		Implementation Risk, e.g. construction and customer EE/DR	*	Ability to complete all projects through construction and implement customer programs
Development Risk	40%	40% Technology Risk		Maturity of the proposed technologies, especially utility scale energy storage and DERMS
		Outage Scheduling Risk	\bigcirc	Ability to obtain necessary system outages to bring projects on-line into the system
Organizational	5%	Organizational Risk	††††	Changes in the organization structure, business processes, and decision making
Costs	10%	Total Cost	\$	NPV* over Base Case Scenario

*NPV does not include financial analysis of financing costs or reduced revenue through energy efficiency **DRAFT & CONFIDENTIAL**

Next Steps - Study

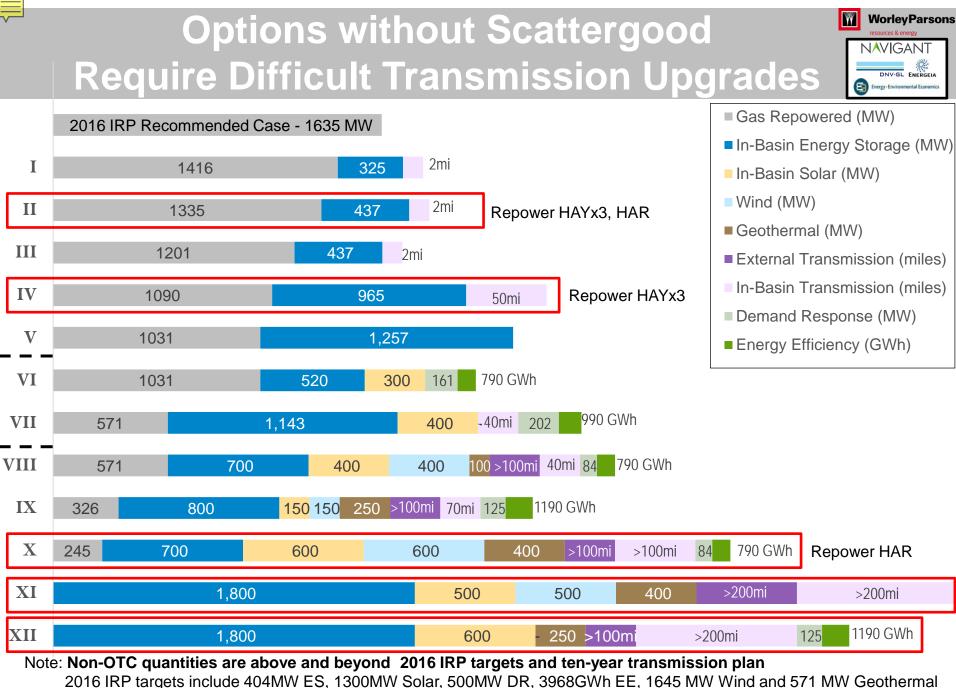
OTC Consultants

- Presentation of results
 - 100% Renewable Advisory Group Nov 15, 2018
 - Present to LADWP Board November 27, 2018
- Finalize Report
 - Completion February 2019


QUESTIONS?

LOLE Requirements

Objective


 Determine what combination of mitigation alternatives can provide equivalent or better reliability to OTC repowering

Scenario	Full Repowering	Harbor Retirement	Scattergood Retirement	Harbor + Scattergood Retirement	Haynes Retirement	Harbor + Haynes Retirement	Haynes + Scattergood Retirement	All Retirement
MW NDC Repowered	* 1593	1348	1256	1011	582	337	245	0
MW NDC Retired	0	245	337	582	1011	1256	1348	1593
LOLE (hrs/yr)**	0.32	0.74	0.93	1.92	5.49	10.65	13.28	32.32

* NDC = Net Dependable Capacity

**lower LOLE by scenario due to assumption on higher max output from Castaic

