





#### Los Angeles 100% Renewable Energy Study Advisory Group Meeting #4 February 15, 2018



# Focus of Today's Meeting

- Advisory Group Meeting Plan
- Advisory Group feedback on:
  - Preliminary Clean Energy Scenarios and Sensitivities
- Continued expansion of Advisory Group knowledge base

#### Today's Agenda



- 9:00 9:05 am Call to Order and Agenda Overview
- 9:05 9:20 am Welcome and Introductions
- 9:20 9:30 am Update Exchange
- 9:30 9:45 am Proposed Site Tour on April 26, 2018
- 9:45 10:30 am Study Approach and AG Meeting Plan
- 10:40 12:00 pm Preliminary Clean Energy Scenarios and Sensitivities
- 12:00 12:15 pm Lunch Served
- 12:15 1:00 pm Power Strategic Long-Term Resource Plan
- 1:00 1:15 pm Wrap-up and Next Steps

#### Welcome and Introductions



www.nrel.gov



# Update Exchange



www.nrel.gov



# **Proposed Site Tour**



www.nrel.gov



#### LADWP Facilities



#### Pine Tree Wind

# Haskell Canyon Switching Station

#### Pine Tree Solar



# Barren Ridge Switching Station

NATIONAL RENEWABLE ENERGY LABORATORY



# Site Tour!

# A Sampling of the LADWP Power System

- Thursday, April 26<sup>th</sup>, 8 am to 6 pm
- Meet at the Valley Generating Station in Sun Valley to board bus
- Meals and snacks provided
- Closed-toe walking shoes, sunscreen, hat, light jacket, sunglasses, long pants, etc.
- RSVP required by March 15<sup>th</sup> please watch for more info via email



• RSVP to Anton.Sy@ladwp.com by March 15, 2018 Joan Isaacson, Anton Sy, Dawn Cotterell



# Quick Mixer!

- In pairs
- Introductions
- Share what you are looking forward to the most on the site tour

# **Advisory Group Meeting Plan**



www.nrel.gov



#### LA 100% Renewable Energy Study-Advisory Group Meeting Plan



| QUARTER | Phase 1 2017                                                                                                                                                                            | Phase 2 2018<br>SCENARIOS                                                                                                                                                                                                             | Phase 3 2019<br>ANALYSIS AND MODELING                                                                                                                                                                               | Phase 4 2020                                                                                                                                                                                                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1      | COMPLETED MEETINGS/TASKS                                                                                                                                                                | <ul> <li>Advisory Group Meeting Plan</li> <li>Preliminary Scenarios and Sensitivities</li> <li>Field Trip Itinerary</li> <li>Power Strategic Long-Term Power<br/>Resources Plan</li> <li>Once-Through Cooling Study Update</li> </ul> | <ul> <li>Capacity Value</li> <li>Electricity Operations Modeling II</li> <li>Jobs &amp; Economic Analysis II</li> </ul>                                                                                             | <ul> <li>White Papers on Electricity Modeling<br/>Results</li> <li>Final Results 1) Jobs &amp; Economic<br/>Analysis and 2) Environmental Analysis</li> <li>Final Visualization of<br/>Electricity Operations</li> </ul> |
| Q2      | Advisory Group Launch     City Council Motion:     100% Renewable Energy Study                                                                                                          | <ul> <li>Draft 100% Papers:<br/>Framing, Data, Methods</li> <li>Final Scenarios and Sensitivities</li> <li>Once-Through Cooling Study Update</li> <li>LADWP Financial Basics</li> </ul>                                               | <ul> <li>Planning Reserves</li> <li>Operating Reserves</li> <li>Load Modernization</li> <li>Environmental Analysis II</li> <li>Publication Plan</li> </ul>                                                          | Final Report     Final Presentation                                                                                                                                                                                      |
| Q3      | <ul> <li>Advisory Group Charge and<br/>Operating Protocols</li> <li>Introduction to NREL and 100%<br/>Renewable Energy Study</li> </ul>                                                 | <ul> <li>Final 100% Papers</li> <li>Electricity Operations Modeling I</li> <li>Jobs &amp; Economic Analysis I</li> <li>Environmental Modeling I</li> <li>Once-Through Cooling Study Update</li> </ul>                                 | <ul> <li>Final Scenarios and Sensitivities<br/>Results</li> <li>Final Visualization of Scenarios</li> <li>Initial Electricity Operations<br/>Modeling Results</li> </ul>                                            | LA<br>Department of<br>Water & Power                                                                                                                                                                                     |
| Q4      | <ul> <li>Defining Clean Energy and<br/>Renewable Energy</li> <li>Considerations for Study</li> <li>Once-Through Cooling Study<br/>Overview</li> <li>Public Outreach Overview</li> </ul> | <ul> <li>Initial Scenario Results</li> <li>Draft Visualizations of Scenarios</li> <li>Once-Through Cooling Study Results</li> </ul>                                                                                                   | <ul> <li>Final Electricity Operations<br/>Modeling Results and Draft<br/>Visualizations</li> <li>Draft results on Jobs and Economic<br/>Development</li> <li>Draft results on Environmental<br/>Analysis</li> </ul> | As of January 23, 2018                                                                                                                                                                                                   |







#### Preliminary Clean Energy Scenarios and Sensitivities

Aaron Bloom, Paul Denholm, and Daniel Steinberg

February 15<sup>th</sup>, 2018



- Review Memo on Definitions of Renewable Energy
- Discussion Activity 1, November 14
  - o What we heard
  - Preliminary Clean Energy Scenarios and Sensitivities
- Discussion Activity 2, November 14
  - o What we heard
  - Research Design

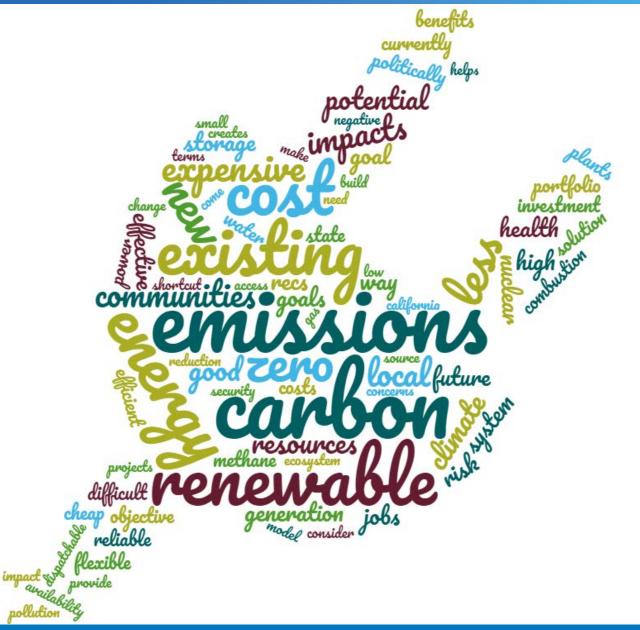


| Resource                                | California<br>RPS | New Jersey<br>RPS | Colorado<br>RPS | Austin, Texas<br>RPS                                  | IEA | EIA            | Renewable Energy<br>Certificates | <b>REN 21</b> | RE100                     |
|-----------------------------------------|-------------------|-------------------|-----------------|-------------------------------------------------------|-----|----------------|----------------------------------|---------------|---------------------------|
| Wind and Solar                          | ٧                 | V                 | V               | ٧                                                     | ٧   | ٧              | V                                | V             | ٧                         |
| Hydro                                   | ٧*                | v                 | V               | V                                                     | v   | V              | $\checkmark$                     | $\checkmark$  | V                         |
| Bioenergy                               | √*                |                   | √<br>(biomass)* | √ (biomass or<br>biomass-<br>based waste<br>products) | V   | √<br>(biomass) | √ (biomass)                      | √ (biopower)  | √ (biomass<br>and biogas) |
| Landfill Gas                            | V                 | V                 |                 | V                                                     |     |                |                                  |               |                           |
| Fuel Cell                               | V                 | V                 |                 | V                                                     |     |                |                                  |               |                           |
| Geothermal                              | ٧                 | V                 | V               | V                                                     | ٧   | v              | V                                | V             | V                         |
| Municipal Solid<br>Waste<br>Conversion  | V                 |                   |                 |                                                       |     |                |                                  |               |                           |
| Ocean Thermal                           | √*                |                   |                 |                                                       | ٧   | V              |                                  |               | V                         |
| Ocean Wave                              | √*                | V                 |                 | ٧                                                     | ٧   | V              |                                  |               | ٧                         |
| Tidal Current                           | <b>v</b> *        | V                 |                 | ٧                                                     | ٧   | V              |                                  |               | V                         |
| Other Minor<br>Technologies             | V                 | V                 | V               |                                                       |     |                |                                  |               | V                         |
| Tradable<br>Renewable<br>Energy Credits | V                 |                   | V               |                                                       |     |                |                                  |               |                           |

#### **November 14 Discussion Activities**

LA D WP

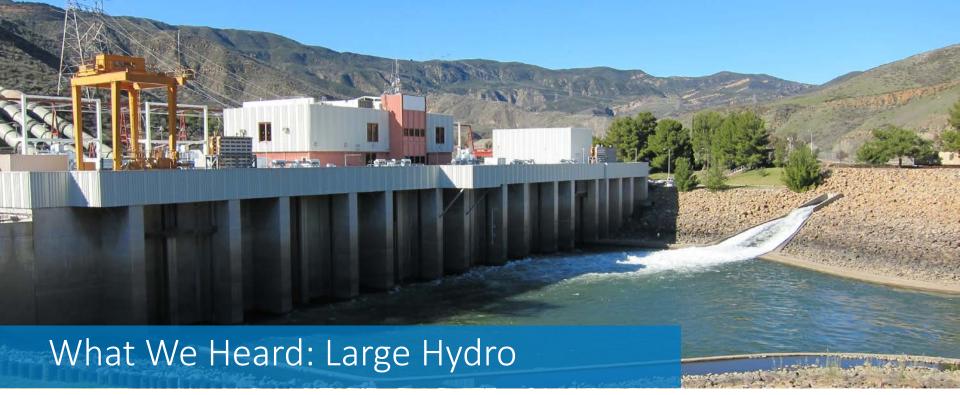
- Input on advantages and disadvantages of incorporating various technologies into the study
- Brainstorm: "What types of questions, issues, topics, and ideas should be considered as part of the study?"






- Discussed trade-offs in technologies
- Discussed goals for the LADWP system
- Informed how the study should be structured
- Identified which study results are important
- Full input in Appendix B Handout

#### Discussion Activity #1





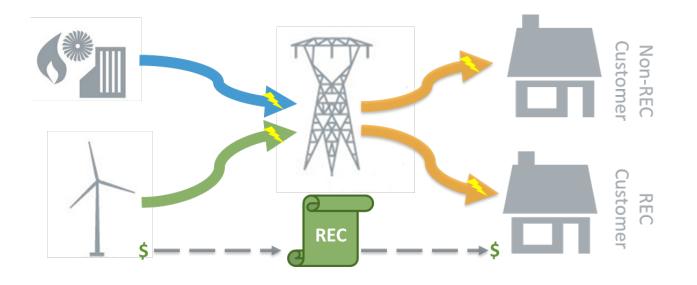

#### Discussion Activity #2





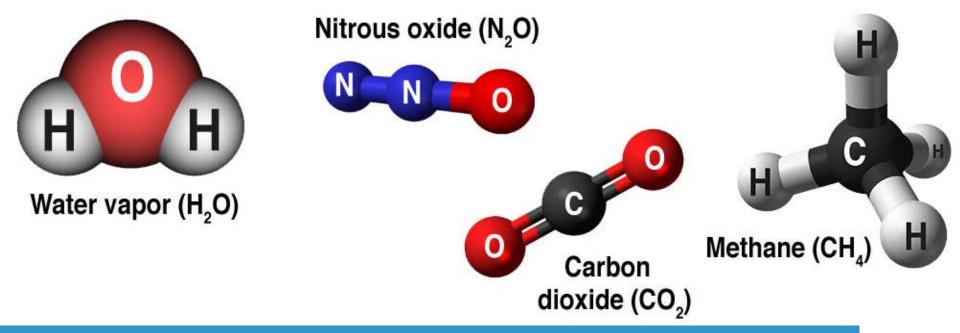


- **Positives:** Flexible, cheap, existing, zero emissions, reliable\*
- **Negatives:** Old, ecological impact, seasonality, drought
- **Themes:** Existing hydro should be grandfathered. How much new hydro resource is available?



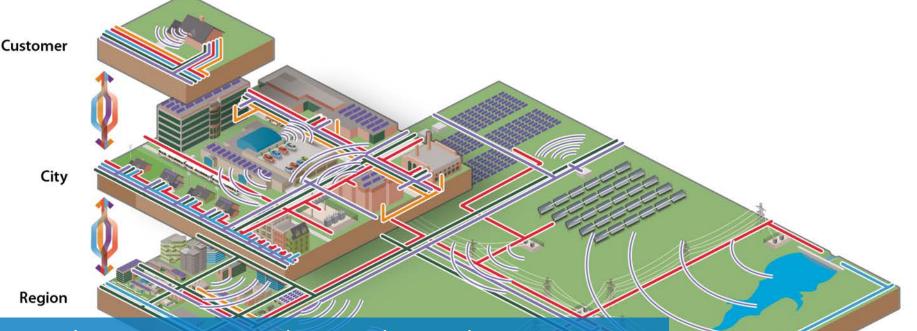

- **Positives:** Flexible, uses existing waste, carbon neutral, reliable
- **Negatives:** Emissions, carbon accounting, resource availability, state limits
- Themes: What are the costs and benefits of allowing bioenergy? Can we differentiate between waste energy, biomass, and biofuels? Will resource availability limit resource potential?

# What We Heard: Nuclear Energy


- Positives: Zero carbon, baseload, inertia, cost, existing units, reliable
- Negatives: Cost, nuclear waste, security, public health, ownership/risk
- Themes: Input ranged from grandfathering existing nuclear, to assessing the costs and benefits of allowing new nuclear and avoiding all nuclear.

The LADWP capacity at Palo Verde is scheduled to have a staggered retirement from 2045-2047.




#### What We Heard: Credits and Allowances

- **Positives:** Cheap, balance margins, fast, practical for the last 10-20%
- **Negatives:** Beneficiaries don't pay, shortcut, credibility
- Themes: RECs may be an effective strategy, but there is concern about the legitimacy of RECs. Another concern is that environmental justice neighborhoods will not receive any benefits.



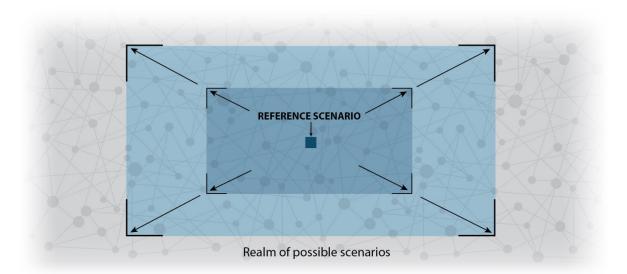
#### What We Heard: Zero Carbon Emissions Objective

- **Positives:** Significant support, addresses climate goals, easier to define than "renewable"
- **Negatives:** What about other greenhouse gases?
- **Themes:** Picking technologies can get complicated quickly; focusing on carbon sounds straightforward.



#### What We Heard: Load Modernization

- Topic identified in Discussion Activity 2
- **Positives:** Focus on local resources, energy efficiency, EVs, storage, local beneficiaries
- **Negatives:** Potentially expensive new tech, insufficient natural resource
- Themes: Distributed resources and energy efficiency


Preliminary Clean Energy Scenarios and Sensitivities for Advisory Group Input



- Start with the City Council Motions and Advisory Group Comments:
  - o Identify least-cost pathway(s) to a clean energy future by 2050
  - Determine what investments are necessary to reach a clean energy future
  - Identify the potential economic and environmental impacts of a clean energy future on LADWP ratepayers
- Consider full set of opportunities:
  - o Demand-side (demand response, end-use efficiency, and electrification)
  - Supply-side (renewable generation, nuclear, carbon capture and storage)
  - o Financial mechanisms (allowances, offsets, and credits)
- Produce results that are robust to a broad set of future conditions/uncertainties:
  - Changes in load—quantity, flexibility, and efficiency
  - Balance between centralized and distributed supply
  - o Ability to develop additional transmission
  - Evolution of key technologies (e.g., batteries, PV, wind)

**Scenarios:** Identify the overarching policy or technological driver for achieving a clean energy future

**Sensitivities:** Under a given scenario, explore how changes in future conditions could alter the pathway and outcomes for that scenario



#### Preliminary Clean Energy Scenarios



| Reference Cases |                                     |             |              | LA                     | Leads             |                                                                                                                               |                       |
|-----------------|-------------------------------------|-------------|--------------|------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                 | Candidate<br>Technologies           | 2018<br>IRP | Draft SB 100 | 100% Carbon<br>Neutral | 100%<br>Renewable | 100% Carbon Neutral –<br>Accelerated                                                                                          | Load<br>Modernization |
|                 | Natural Gas                         | •           | •            | •                      |                   | •                                                                                                                             |                       |
|                 | Wind, Solar, Geothermal             | •           | •            | •                      | •                 | •                                                                                                                             | •                     |
|                 | Existing Nuclear                    | •           | •            | •                      |                   | •                                                                                                                             |                       |
|                 | New Nuclear                         |             |              | •                      |                   | •                                                                                                                             |                       |
| S               | Bioenergy                           | •           | •            | •                      |                   | •                                                                                                                             |                       |
| Scenarios       | Carbon Capture<br>and Sequestration |             |              | •                      |                   | •                                                                                                                             |                       |
| Sci             | Existing Hydro                      | •           | •            | •                      | •                 | •                                                                                                                             | •                     |
|                 | New Hydro                           | •           | •            | •                      |                   | •                                                                                                                             |                       |
|                 | CO2 Allowances                      | •           | •            | •                      |                   | •                                                                                                                             |                       |
|                 | RECs                                | •           | •            | •                      |                   | •                                                                                                                             |                       |
|                 | Storage                             | •           | •            | •                      | •                 | •                                                                                                                             | •                     |
|                 | Electric Vehicles                   | Expected    | Expected     | Expected               | Expected          | Expected                                                                                                                      | HIGH                  |
| S               | Energy Efficiency                   | Expected    | Expected     | Expected               | Expected          | HIGH                                                                                                                          | HIGH                  |
| ivitie          | Demand Response                     | Expected    | Expected     | Expected               | Expected          | HIGH                                                                                                                          | HIGH                  |
| Sensitivities   | Transmission Feasibility            | Expected    | Expected     | Expected               | Expected          | NEW PATHS                                                                                                                     | NEW PATHS             |
| Se              | Decentralization                    | Expected    | Expected     | Expected               | Expected          | Expected                                                                                                                      | HIGH                  |
|                 | Technology Cost                     | Expected    | Expected     | Expected               | Expected          | Low                                                                                                                           | Low                   |
|                 | Timeframe                           | 2020-2050*  | 2020-2050*   | 2020-2050*             | 2020-2050*        | 2020–2045*<br>The for further legislative devices the second s | 2020–2050*            |

\*We will wait until May 2018 to finalize the scenario timeframe and sensitivities to give opportunity for further legislative development.

# Preliminary Clean Energy Scenario: 2018 Integrated Resource Plan

- <u>Definition</u> The evolution of the LA power system is influenced by existing policies (local, state, and federal). Current LADWP policy is driven by <u>SB 350</u>, <u>aspirational city</u> <u>targets</u>, and the <u>Once-Through</u> <u>Cooling study</u>. This definition will be similar with the 2018 LADWP PSLTRP process but not identical.
- <u>Justification</u> A base case is essential to measure the costs and benefits of future scenarios.

|           | Candidate Technologies              | 2018<br>IRP |
|-----------|-------------------------------------|-------------|
|           | Natural Gas                         | •           |
|           | Wind, Solar, Geothermal             | •           |
|           | Existing Nuclear                    | •           |
|           | New Nuclear                         |             |
| ຊ         | Bioenergy                           | •           |
| ocenarios | Carbon Capture<br>and Sequestration |             |
| 5         | Existing Hydro                      | •           |
|           | New Hydro                           | •           |
|           | CO2 Allowances                      | •           |
|           | RECs                                | •           |
|           | Storage                             | •           |
|           | Electric Vehicles                   | Expected    |
| s<br>S    | Energy Efficiency                   | Expected    |
|           | Demand Response                     | Expected    |
|           | Transmission Feasibility            | Expected    |
| Ň         | Decentralization                    | Expected    |
|           | Technology Cost                     | Expected    |
|           | Timeframe                           | 2020–2050*  |

### Preliminary Clean Energy Scenario: DRAFT SB 100

- <u>Definition</u> The evolution of the LA power system is driven by policies that extend existing policies to obtain 100% renewable energy.
- Justification This scenario is intended to be a proxy for last year's S.B. 100. It extends existing statutory resource constraints to create a 100% RPS.

|              | Candidate Technologies              | DRAFT SB 100 |
|--------------|-------------------------------------|--------------|
|              | Natural Gas                         | •            |
|              | Wind, Solar, Geothermal             | •            |
|              | Existing Nuclear                    | •            |
|              | New Nuclear                         |              |
| SC           | Bioenergy                           | •            |
| scenarios    | Carbon Capture<br>and Sequestration |              |
| Ŭ<br>N       | Existing Hydro                      | •            |
|              | New Hydro                           | •            |
|              | CO2 Allowances                      | •            |
|              | RECs                                | •            |
|              | Storage                             | •            |
|              | Electric Vehicles                   | Expected     |
| es           | Energy Efficiency                   | Expected     |
| ensitivities | Demand Response                     | Expected     |
| ISUS         | Transmission Feasibility            | Expected     |
| N<br>N       | Decentralization                    | Expected     |
|              | Technology Cost                     | Expected     |
|              | Timeframe                           | 2020-2050*   |
|              |                                     |              |

# Preliminary Clean Energy Scenario: 100% Carbon Neutral

- <u>Definition</u> LA achieves a net-zero carbon emissions power system. This scenario is a technology-agnostic pathway to achieving a net-zero emissions future. A carbon cap-and-trade program is implemented that ramps to zero-carbon.
- Justification Reflects Advisory Group input to study a diverse set of resource options. This approach is proposed because of the urgent need to reduce carbon dioxide emissions, as described by the Advisory Group. It is the most flexible scenario to reaching a decarbonized electricity system.

|             | Candidate Technologies              | 100% Carbon Neutral |  |  |
|-------------|-------------------------------------|---------------------|--|--|
|             | Natural Gas                         | •                   |  |  |
|             | Wind, Solar, Geothermal             | •                   |  |  |
|             | Existing Nuclear                    | •                   |  |  |
|             | New Nuclear                         | •                   |  |  |
| SC          | Bioenergy                           | •                   |  |  |
| Scenarios   | Carbon Capture<br>and Sequestration | •                   |  |  |
| Sc          | Existing Hydro                      | •                   |  |  |
|             | New Hydro                           | •                   |  |  |
|             | CO2 Allowances                      | •                   |  |  |
|             | RECs                                | •                   |  |  |
|             | Storage                             | •                   |  |  |
|             | Electric Vehicles                   | Expected            |  |  |
| es          | Energy Efficiency                   | Expected            |  |  |
| nsitivities | Demand Response                     | Expected            |  |  |
|             | Transmission Feasibility            | Expected            |  |  |
| Se          | Decentralization                    | Expected            |  |  |
|             | Technology Cost                     | Expected            |  |  |
|             | Timeframe                           | 2020–2050*          |  |  |

# Preliminary Clean Energy Scenario: 100% Renewable

- <u>Definition</u> LA achieves a power system in which 100% of load is met with generation from a limited selection of renewable resources.
- Justification This scenario is the strictest interpretation of 100% renewable energy. As per discussions with the Advisory Group, this case does not include any generation that uses combustion. This scenario is less flexible than the 100% Carbon Neutral.

|               | Candidate Technologies              | 100% Renewable |
|---------------|-------------------------------------|----------------|
|               | Natural Gas                         |                |
|               | Wind, Solar, Geothermal             | •              |
|               | Existing Nuclear                    |                |
|               | New Nuclear                         |                |
| SC            | Bioenergy                           |                |
| Scenarios     | Carbon Capture<br>and Sequestration |                |
| Š             | Existing Hydro                      | •              |
|               | New Hydro                           |                |
|               | CO2 Allowances                      |                |
|               | RECs                                |                |
|               | Storage                             | •              |
|               | Electric Vehicles                   | Expected       |
| es            | Energy Efficiency                   | Expected       |
| Sensitivities | Demand Response                     | Expected       |
| insit         | Transmission Feasibility            | Expected       |
| Š             | Decentralization                    | Expected       |
|               | Technology Cost                     | Expected       |
|               | Timeframe                           | 2020-2050*     |

#### Preliminary Clean Energy Scenario: 100% Carbon Neutral – Accelerated

 <u>Definition</u> – LA achieves a power system that has net-zero emissions. This scenario is identical to the *Carbon Neutral* scenario but is on an accelerated timeline. Scenarios

Sensitivities

 Justification – This scenario reflects the Advisory Group's interest in rapidly reducing the impact of LADWP on carbon dioxide emissions. It allows the model to select from a full range of options to find the cheapest options for rapidly decarbonizing the electricity system.

|   | Candidate Technologies              | 100% Carbon Neutral –<br>Accelerated |  |  |
|---|-------------------------------------|--------------------------------------|--|--|
|   | Natural Gas                         | •                                    |  |  |
|   | Wind, Solar, Geothermal             | •                                    |  |  |
|   | Existing Nuclear                    | •                                    |  |  |
|   | New Nuclear                         | •                                    |  |  |
| 2 | Bioenergy                           | •                                    |  |  |
|   | Carbon Capture<br>and Sequestration | •                                    |  |  |
| 5 | Existing Hydro                      | •                                    |  |  |
|   | New Hydro                           | •                                    |  |  |
|   | CO2 Allowances                      | •                                    |  |  |
|   | RECs                                | •                                    |  |  |
|   | Storage                             | •                                    |  |  |
|   | Electric Vehicles                   | Expected                             |  |  |
| 3 | Energy Efficiency                   | HIGH                                 |  |  |
|   | Demand Response                     | HIGH                                 |  |  |
|   | Transmission Feasibility            | NEW PATHS                            |  |  |
| 2 | Decentralization                    | Expected                             |  |  |
|   | Technology Cost                     | Low                                  |  |  |
|   | Timeframe                           | 2020–2045*                           |  |  |

# Preliminary Clean Energy Scenario: Load Modernization

- <u>Definition</u> This scenario aims to reach the 100% renewable goals by leveraging distributed energy resources. It includes very high levels of electric vehicles, energy efficiency, and demand response. This scenario focuses on leveraging local resources.
- <u>Justification</u> The Advisory Group expressed strong preferences for a strategy that leveraged local resources to meet climate goals.

| Candidate Technologies              | Load Modernization |
|-------------------------------------|--------------------|
| Natural Gas                         |                    |
| Wind, Solar, Geothermal             | •                  |
| Existing Nuclear                    |                    |
| New Nuclear                         |                    |
| Bioenergy                           |                    |
| Carbon Capture<br>and Sequestration |                    |
| Existing Hydro                      | •                  |
| New Hydro                           |                    |
| CO2 Allowances                      |                    |
| RECs                                |                    |
| Storage                             | •                  |
| Electric Vehicles                   | HIGH               |
| Energy Efficiency                   | HIGH               |
| Demand Response                     | HIGH               |
| Transmission Feasibility            | NEW PATHS          |
| Decentralization                    | HIGH               |
| Technology Cost                     | Low                |
| Timeframe                           | 2020–2050*         |

**Scenarios** 

Sensitivities

#### Preliminary Clean Energy Scenarios



| Reference Cases |                                     |             |              | LA                     | Leads             |                                              |                       |
|-----------------|-------------------------------------|-------------|--------------|------------------------|-------------------|----------------------------------------------|-----------------------|
|                 | Candidate<br>Technologies           | 2018<br>IRP | Draft SB 100 | 100% Carbon<br>Neutral | 100%<br>Renewable | 100% Carbon Neutral –<br>Accelerated         | Load<br>Modernization |
|                 | Natural Gas                         | •           | •            | •                      |                   | •                                            |                       |
|                 | Wind, Solar, Geothermal             | •           | •            | •                      | •                 | •                                            | •                     |
|                 | Existing Nuclear                    | •           | •            | •                      |                   | •                                            |                       |
|                 | New Nuclear                         |             |              | •                      |                   | •                                            |                       |
| S               | Bioenergy                           | •           | •            | •                      |                   | •                                            |                       |
| Scenarios       | Carbon Capture<br>and Sequestration |             |              | •                      |                   | •                                            |                       |
| Sci             | Existing Hydro                      | •           | •            | •                      | •                 | •                                            | •                     |
|                 | New Hydro                           | •           | •            | •                      |                   | •                                            |                       |
|                 | CO2 Allowances                      | •           | •            | •                      |                   | •                                            |                       |
|                 | RECs                                | •           | •            | •                      |                   | •                                            |                       |
|                 | Storage                             | •           | •            | •                      | •                 | •                                            | •                     |
|                 | Electric Vehicles                   | Expected    | Expected     | Expected               | Expected          | Expected                                     | HIGH                  |
| Se              | Energy Efficiency                   | Expected    | Expected     | Expected               | Expected          | HIGH                                         | нідн                  |
| ivitio          | Demand Response                     | Expected    | Expected     | Expected               | Expected          | HIGH                                         | нідн                  |
| Sensitivities   | Transmission Feasibility            | Expected    | Expected     | Expected               | Expected          | NEW PATHS                                    | NEW PATHS             |
| Se              | Decentralization                    | Expected    | Expected     | Expected               | Expected          | Expected                                     | HIGH                  |
|                 | Technology Cost                     | Expected    | Expected     | Expected               | Expected          | Low                                          | Low                   |
|                 | Timeframe                           | 2020-2050*  | 2020-2050*   | 2020-2050*             | 2020-2050*        | 2020–2045*<br>Ty for further legislative dev | 2020-2050*            |

\*We will wait until May 2018 to finalize the scenario timeframe and sensitivities to give opportunity for further legislative development.

#### Discussion Activity #2: Considerations for Study



• Study must show the system is:

Reliable



Healthy









#### Research Approach



|                            | Objective                                                                                                                                                                                                                       | Informs |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ECONOMIC<br>ANALYSIS:      | Determine the economic and jobs impact of select study scenarios                                                                                                                                                                |         |
| ENVIRONMENTAL<br>ANALYSIS: | Identify and quantify the air quality, GHG,<br>and environmental justice impacts of select<br>study scenarios                                                                                                                   |         |
| ELECTRICITY<br>ANALYSIS:   | Conduct a suite of engineering and economic<br>studies to determine the future composition<br>of the LADWP system and how it might<br>operate. Considers all time scales on both<br>the transmission and distribution networks. |         |
| ELECTRIC LOAD<br>MODELING: | Develop a range of load forecast and profiles for use in electric system modeling                                                                                                                                               |         |

# What could future **Demand** look like?

- Takes into consideration a variety of ways demand could change in the future
- Includes detailed accounting for energy efficiency, demand response, electrification

| ECONOMIC<br>ANALYSIS:      | Jobs &<br>Economic<br>Development       |
|----------------------------|-----------------------------------------|
| ENVIRONMENTAL<br>ANALYSIS: | Air Quality,<br>GHG, & Public<br>Health |
|                            | AC Power Flow                           |
| ELECTRICITY<br>ANALYSIS:   | Operations                              |
|                            | Expansion                               |
| ELECTRIC LOAD<br>MODELING: | Demand<br>Forecast                      |

# Are the scenarios **Reliable**?

- Full-scale power systems analysis
- Integrated transmission and distribution modeling
- Near complete transformation of the LADWP system

| ECONOMIC<br>ANALYSIS:      | Jobs &<br>Economic<br>Development       |
|----------------------------|-----------------------------------------|
| ENVIRONMENTAL<br>ANALYSIS: | Air Quality,<br>GHG, & Public<br>Health |
|                            |                                         |
|                            | AC Power Flow                           |
| ELECTRICITY<br>ANALYSIS:   | AC Power Flow Operations                |
|                            |                                         |

How could the scenarios impact **Public Health** and the **Environment**?

- Detailed analysis of impact of changes in air quality and their impact on public health, as well as changes to GHG emissions
- Designed to identify comparative environmental impacts of selected scenarios
- Relies on data from electricity analysis and demand forecasts

| ECONOMIC<br>ANALYSIS:      | Jobs &<br>Economic<br>Development       |
|----------------------------|-----------------------------------------|
| ENVIRONMENTAL<br>ANALYSIS: | Air Quality,<br>GHG, & Public<br>Health |
|                            | AC Power Flow                           |
| ELECTRICITY<br>ANALYSIS:   | Operations                              |
|                            | Expansion                               |
| ELECTRIC LOAD<br>MODELING: | Demand<br>Forecast                      |

#### Are the scenarios Just?

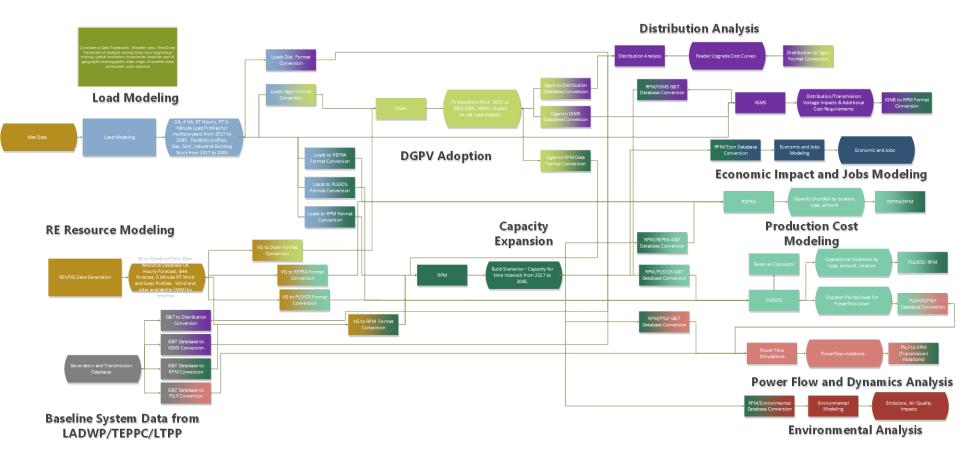
- Designed to understand how environmental justice communities are impacted by the transformation in terms of changes in public health outcomes.
- Informs how jobs and the broader economy could be impacted by a 100% renewable future.

| ECONOMIC<br>ANALYSIS:      | Jobs &<br>Economic<br>Development       |
|----------------------------|-----------------------------------------|
| ENVIRONMENTAL<br>ANALYSIS: | Air Quality,<br>GHG, & Public<br>Health |
|                            | AC Power Flow                           |
| ELECTRICITY<br>ANALYSIS:   | Operations                              |
|                            | Expansion                               |
| ELECTRIC LOAD<br>MODELING: | Demand<br>Forecast                      |

# Are the scenarios **Affordable**?

- Study will provide detailed capital and variable costs for the electricity sector
- Study will quantify the economic impact of the energy transition
- Study will analyze the jobs and economic impact of a 100% future

#### + RATEPAYER ADVOCATE


| ECONOMIC<br>ANALYSIS:      | Jobs &<br>Economic<br>Development       |
|----------------------------|-----------------------------------------|
| ENVIRONMENTAL<br>ANALYSIS: | Air Quality,<br>GHG, & Public<br>Health |
|                            | AC Power Flow                           |
| ELECTRICITY<br>ANALYSIS:   | Operations                              |
|                            | Expansion                               |
| ELECTRIC LOAD<br>MODELING: | Demand<br>Forecast                      |

# What does this mean from a technical perspective?

#### **Modeling Flow Chart**



Note: This flowchart only includes data needed by other models. It does NOT include general results for the study as a whole





## **Discussion Activity – Roundtable Input**

"Do these preliminary scenarios and sensitivities provide the framework for a study that 1) Meets the directives of the City Council motion and related amendments, and 2) Reflects the input themes from the November Advisory Group meeting?"



## **Tips for Productive Discussions**

- Let one person speak at a time
- Help to make sure everyone gets equal time to give input
- Keep your input concise so others have time to participate
- Actively listen to others and seek to understand their perspectives

## Lunch



www.nrel.gov



NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

# Power Strategic Long-Term Resource Plan

# during lunch



www.nrel.gov



NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

## Wrap Up and Next Steps



www.nrel.gov



NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.