

TECHNICAL MEMORANDUM

TO: Hector Gandarilla, PE, LADWP

Craig A. Davis, PhD, PE, GE, LADWP

CC: Saeed Jorat, PhD, PE, LADWP

Jeffrey S. Walker, PE, GE, Kleinfelder

FROM: Darrin Hasham, PG, CEG, Kleinfelder

C. Eric Philips, PE, GE, Kleinfelder

DATE: January 13, 2014

SUBJECT: Technical Memorandum

Groundwater Monitoring Well Installation

Owens Lake Groundwater Development Program

As-Needed Geotechnical Services

Task Order No. 19, LADWP Agreement No. 47805

ATTACHMENTS: Plate 1 – Site Location Map

Appendix A – Boring Logs

Appendix B – Soil Core Photographs Appendix C – Soil Analytical Results

Appendix D – Well Construction Diagrams

Appendix E – Pumping Test Results Appendix F – Water Quality Results

1 INTRODUCTION

Kleinfelder West, Inc. (Kleinfelder) is pleased to present this technical memorandum summarizing the groundwater monitoring well installation, well development, and limited pumping tests performed for the Los Angeles Department of Water and Power's (LADWP) Owens Lake Groundwater Development Program. This memorandum was prepared in accordance with our authorized scope of services for Task Order 19 presented in our proposal dated June 14, 2013 (authorized June 24, 2013), and amended based on our email dated November 8, 2013 (authorized November 20, 2013).

2 BACKGROUND

Owens Lake is located in the southern part of Owens Valley, which is a generally north –south trending valley in the western part of the Basin and Range geomorphic province (CGS, 2002). Owens Valley is an asymmetrical down dropped fault block, or graben, located between the Sierra Nevada on the west and the White and Inyo Mountains on

the east. The Owens Valley is incised by one major stream, the Owens River, which meanders southward to its terminus at the Owens Lake Playa. Numerous tributaries of the Owens River drain the Sierra Nevada on the west and have formed extensive coalesced alluvial fans along the west side of the valley. The fans form a prominent alluvial apron the nearly extends to the middle of the valley. Alluvial deposits on the east side of the valley are much smaller and disconnected, providing the valley's asymmetrical appearance (Hollett et al, 1991).

Glaciation in the Sierra Nevada produced abundant sediments that continue to be transported to the Owens Valley by perennial streams. The valley fill is comprised of a heterogeneous mixture of unconsolidated to moderately consolidated sediments that range in size from large boulders to glacial flour and lacustrine silts and clays. The various sediments are deposited in a complex arrangement of inter fingering and layering caused by fluvial, lacustrine, alluvial fan, littoral, deltaic, colluvial and glacial deposits. Sediments within the Owens Lake basin range in thickness from a few feet at the valley margins to over 8,000 feet beneath the Owens Lake Playa (Hollett et al, 1991).

3 PROJECT DESCRIPTION

The Owens Lake Playa is an approximately 110 square-mile part of the Owens Valley Planning Area, in Inyo County, California (Plate 1, Site Location Map). Owens Lake Playa is bounded by State Route (SR) 136 to the north and east, SR 190 to the south, and United States (US) Highway 395 to the west. The project area includes portions of the Bartlett, Dolomite, Keeler, Lone Pine, Olancha, Owens Lake, and Vermillion Canyon 7.5 minute US Geological Survey (USGS) quadrangles. The nearest community to the project site is Lone Pine, about 2 miles north of the northern limits of the project area. Other nearby communities include Swansea, Dolomite, and Keeler to the east and Cartago and Olancha to the south.

This project is part of a larger groundwater monitoring program to study the effects of potential LADWP groundwater pumping for dust mitigation activities at Owens Lake. This project consists of constructing groundwater monitoring wells for developing a baseline of water levels in the shallow aquifer underlying Owens Lake playa and adjacent areas; and to serve as observation points during pumping tests for future studies. The following sections summarize the scope of services provided under this Task Order.

4 FIELD EXPLORATION AND MONITORING WELL CONSTRUCTION

4.1 Field Exploration

Kleinfelder installed groundwater monitoring wells (4-inch diameter) within fourteen borings advanced using sonic drilling technology. The fourteen borings were drilled between July 17th and September 29th, 2013 using a Prosonic 600C sonic drilling rig provided by Cascade Drilling LLC of La Habra, California, equipped with 8-inch nominal diameter steel conductor casing and a 6-inch nominal diameter core barrel. Depending on conditions encountered, 7-inch- and 9-inch-diameter conductor casings were also utilized during part of the drilling. The 9-inch casing was used in the upper part of several of the borings as a safeguard to control flows if artesian conditions were encountered. The 7-inch casing was used in several borings to increase drilling efficiency, reduce the amount of cuttings generated, and to reduce the amount of materials needed to backfill the over-drilled portion of some borings. The approximate locations of the monitoring wells selected by LADWP, designated wells MW-1 through MW-14 (LADWP ID Numbers T-930, T-931, and T-918 through T-929, respectively), are presented on Plate 1, Site Location Map.

The borings were advanced to depths ranging from 75 feet to 268 feet below ground surface (bgs). The termination depth of each boring was determined in the field by Kleinfelder's field geologist and LADWP's field representative. Factors that influenced termination of the borings included depth of first encountered groundwater, drilling progress, and types of soils encountered.

Soil cores were collected in polyethylene sleeves from each of the sonic borings from sample "runs" that were typically 10-feet long. Kleinfelder provided a California-licensed Certified Engineering Geologist to log the cores and provide drilling oversight. Our staff visually classified the soil in general accordance with the Unified Soil Classification System (USCS) and ASTM D2488 and maintained logs of the soil stratigraphy. Logs of Kleinfelder's borings (including a Key to Log of Boring) are presented in Appendix A, Boring Logs, in gINT® (Bentley Systems Inc., 2012) format.

4.2 Soil Core Photographs

Photographs of the cores were taken in the field under natural light after they were logged. The photos depict the sediments and stratigraphy recovered in the soil cores.

The photographs have been saved to a Digital Video Disk (DVD) and are presented as Appendix B, Soil Core Photographs.

4.3 Soil Analytical Sampling and Testing

As requested by LADWP, Kleinfelder collected soil samples to test for Volatile Organic Compounds (VOCs), Total Petroleum Hydrocarbons (TPH), and California Title 22 metals. Composite samples, generally from the upper 20 feet bgs at each boring were collected for analytical testing. Samples were collected in 4-ounce glass jars and capped with tight-fitting Teflon® lined plastic lids. Samples were labeled and kept in a cooler containing ice until they were transported to our subcontractor lab, Enviro-Chem, under chain-of-custody protocol. The remainder of each soil core was stockpiled pending results of the analytical testing.

Environmental laboratory tests performed consisted of the following:

- VOCs using United States Environmental Protection Agency (US EPA) Method 8260B;
- TPH using US EPA Method 8015B;
- California Code of Regulations (CCR) Title 22 metals using US EPA Methods 6010B and 7471A;

Results of the analytical testing were presented to LADWP. Upon receipt of the analytical testing results, LADWP spread the stockpiled soil cores on the ground in the vicinity of boring location. Copies of the chain-of-custody documentation and laboratory reports are provided in Appendix C, Laboratory Analytical Reports.

4.4 Monitoring Well Construction

At the completion of drilling activities, groundwater monitoring wells were constructed. The borings for wells MW-2 through MW-4 and MW-10 through MW-14 (T-931, T-918, T-919, and T-925 through T-929, respectively) were drilled deeper than the depth required for well installation. Prior to constructing these wells, the overdrilled portion of the boring was backfilled with a grout mixture consisting of Portland cement and approximately 5 percent bentonite powder. The grout was placed by tremie and allowed to cure overnight.

Monitoring wells were constructed with 4-inch diameter Schedule 10 A304 stainless steel well casing. All groundwater monitoring wells constructed for this project include a

30-foot screened interval, 5-foot stainless steel sump, and stainless steel bottom cap. The screened interval consists of three 10-foot segments of wire wrapped screen with 0.050-inch slots.

Filter media consists of 8 x 16 gradation (8-mesh) washed well-sand. The length of the filter media surrounding the well screen varies. The filter media extends from between 2 to 5 feet below the bottom of the sump and from 5 to 20 feet above the screen.

A minimum 22-foot sanitary seal was installed above the filter media and, in general, consisted of at least 5-feet of bentonite pellets in submerged intervals and hydrated bentonite chips in dry intervals (dry bentonite chips were placed and then hydrated with water). The interval above the bentonite pellets or chips was backfilled with the same grout mixture used to backfill the overdrilled portion of the boreholes.

The wells were constructed such that the top of the well casing was approximately 2 to 3 feet above ground surface. The above-ground well casing was protected by a 12-inch diameter well monument with a hinged and lockable lid. One of the well heads (MW-10 T-925) was constructed with valves, etc. due to the presence or potential presence of artesian pressures. Well construction diagrams for each well are presented in Appendix D, Well Construction Diagrams. We understand that LADWP crews constructed concrete pads around each well and installed concrete-filled bollards at the corners of the pads to protect the wellheads. Well locations are summarized in Table 1 below and presented on Plate 1.

Table 1. Summary of Well Locations

Well ID	LADWP ID	Northing*	Easting*	Ground Elevation*	Top of Casing (TOC) Elevation (ft.,
	טו	(NAD 83)	(NAD 83)	(ft., NAVD 88)	NAVD 88)
MW-1	T-930	2082073.922	6834844.218	4231.589	4233.522
MW-2	T-931	2079365.935	6849069.180	3616.905	3620.069
MW-3	T-918	2074993.217	6843937.347	3604.901	3606.203
MW-4	T-919	2065111.190	6848664.894	3599.726	3601.722
MW-5	T-920	2063270.236	6843092.912	3810.684	3812.925
MW-6	T-921	2046600.064	6843511.625	3811.330	3813.187
MW-7	T-922	2037549.126	6848889.481	3669.468	3671.309
MW-8	T-923	2020517.887	6849558.507	3650.283	3653.137
MW-9	T-924	2000709.956	6845353.119	3760.374	3762.287
MW-10	T-925	1991137.072	6858068.020	3618.750	3621.795
MW-11	T-926	1971445.096	6864406.827	3715.439	3717.093
MW-12	T-927	2020539.137	6888289.951	3635.118	3636.858
MW-13	T-928	2049346.862	6901459.383	3633.461	3635.116
MW-14	T-929	2082260.919	6875121.507	3632.190	3634.112

^{*}Survey data presented in the Table 1 was provided by LADWP

4.5 Monitoring Well Development

To complete well construction, the groundwater monitoring wells were developed using a combination of surging, bailing, and pumping. Well development took place between September 24th and October 3rd, 2013. The intent of the well development was to remove sediments from within the well casing and improve water flow through the filter media into the well casing. Observations of well performance and groundwater-level recovery rates were used to assess whether the wells could sustain reasonable pumping rates for subsequent constant rate pumping tests. Table 2, below, provides a summary of general well construction details and methods applied at each well.

Table 2. Well Development Summary

	D	Depth (ft.)	<u>۽</u> _	ned BGS) iel		Devel	opmer	nt Methods	۵ ح
Well ID	LADWP	Boring Del BGS (ft.)	Well Depth BGS (ft.)	Screened Interval BG (ft.)	Water Level BTOC* (ft.)	Date (2013)	Surge	Bail	Pump	Recovery Monitored
MW-1	T-930	75	73	38-68	38.2	9-26	Yes	Yes	No	Yes
MW-2	T-931	127	62	27-57	14.02	9-24	Yes	Yes	No	No
MW-3	T-918	197	68	33-63	20.52	10-3	Yes	Yes	No	Yes
MW-4	T-919	220	73	38-68	17.5	9-30	Yes	Yes	@ 3 GPM	Yes
MW-5	T-920	256.5	253	218-248	210.25	9-27	Yes	Yes	No	No
MW-6	T-921	268	263	228-258	230.08	10-1	Yes	Yes	No	No
MW-7	T-922	140	133	98-128	89.8	10-1	Yes	Yes	No	No
MW-8	T-923	118	113	78-108	69.6	10-2	Yes	Yes	No	No
MW-9	T-924	188	183	148-178	137.9	9-27	Yes	Yes	No	No
MW-10	T-925	132	78	43-73	~-4.0	10-2	Yes	Yes	@ 35 GPM	Yes
MW-11	T-926	172	98	63-93	29.36	9-24	Yes	Yes	@ 3 GPM	Yes
MW-12	T-927	154	68	33-63	28.7	9-25	Yes	Yes	@ 3 GPM	No
MW-13	T-928	196	93	58-88	27.92	9-25	Yes	Yes	@ 3 GPM	No
MW-14	T-929	200	93	58-88	8.1	9-26	Yes	Yes	@ 3.25 GPM	No

^{*}BTOC - Below Top of Casing

5 AQUIFER PUMPING TESTS

Based on the results of drawdown and recovery during well development, nine wells (MW-2, MW-5 and MW-7 through MW-14) were selected by LADWP to undergo pumping tests. Pumping tests were performed between September 24th and October 4th, 2013.

5.1 Pumping Test Procedures

The pumping tests utilized 0.33 to 5 horsepower submersible electric pumps powered by portable generators. The pumps, generators, and support vehicles for the aquifer pumping tests were provided by Jet Drilling of Signal Hill California. During the pumping tests, the discharge rates and volumes were monitored and recorded using an electronic flow meter and totalizer (GPI model TM200-N). A graduated 5-gallon bucket was used to manually measure flow rate periodically to validate that the flow meter was working properly. The pumping tests were performed at flow rates that ranged from approximately 3 gpm to approximately 100 gpm. The pumping rates were adjusted

during the first few minutes of each test to a rate that could be sustained without causing water level drawdown to the pump intake elevation. The duration of the pumping tests ranged from 45 to 120 minutes.

Water-level data were collected before, during, and after aquifer pumping tests. A nonvented 100 pound-per square inch (psi) water-level transducer was pre-programmed to record data at a frequency of 30 seconds at wells MW-9 (T-924) and MW-12 (T-927). Data was recorded at 2-second intervals for wells MW-2, MW-5, MW-7, MW-8, MW-10, and MW-13 (T-931, T-920, T-922, T-923, T-925, and T-928, respectively). The transducer was attached to the pump assembly and lowered into the pumping well. The transducer recorded data for approximately 10 minutes before pumping to establish baseline conditions. The transducer was also checked frequently throughout the test period to ensure it was working properly and recording data. Post-pumping water-levels were measured to monitor recovery of the aquifer and the time to return to approximately 95 percent of pre-pumping water-levels.

A summary of the pumping test data is presented in Table 3, Pumping Test Summary, in Section 5.2. Table 3 includes pumping rates measured by the flow meter, flow rates measured manually, and the quantity of groundwater pumped during the pumping test.

5.2 Pumping Test Data Analysis

Kleinfelder's hydrogeologist analyzed the pumping test data using AQTESOLV® Professional v.4.50.002 (HydroSOLVE, Inc., 2007) using the Tartakovsky-Neuman (Tartakovsky and Neuman, 2007) method of analysis. This method uses corrections for unconfined conditions that incorporate well construction specifications, and aquifer thickness. Following are the assumptions implicit in the selected method:

- aquifer has infinite areal extent;
- aquifer is homogeneous and of uniform thickness;
- aguifer potentiometric surface is initially horizontal;
- pumping well is fully or partially penetrating;
- flow is unsteady; and
- aguifer is unconfined with delayed gravity response.

The results of the pumping test analyses are presented in Appendix E, Pumping Test Results. Transmissivity, specific yield, and storativity values estimated from our

analysis are provided in Table 3 below. Hydraulic conductivity was calculated using the depth to water table at the time of the pumping test to the bottom of the screened interval of the monitoring well.

Table 3. Pumping Test Summary

Well ID	LADWP ID	Date Tested (2013)	Initial Water Level BGS (ft.)	Q (GPM)	Drawdown (ft.)	Volume pumped (Gallons)	Duration of Pumping (minutes)	Estimated Trans- missivity (T) (ft²/day)	Estimated Specific Yield (Sy)	Storativity (S)	Anisotropy Ratio (Kz/Kr)	Hydraulic Conductivity (K) (ft/day)
MW-2	T-931	10/03	14.27	35	11.73	3,910	120	731	0.2	0.002869	0.5012	17.11
MW-5	T-920	10/03	210.1	45	7.83	3,041	75	3,113	0.2	0.000119	0.1	82.14
MW-7	T-922	10/04	90.01	33	4.14	1,830	75	1,490	0.05	0.000119	0.5188	39.22
MW-8	T-923	10/04	69.75	39	10.01	2,941	75	1,792	0.2	0.000119	1.0	46.85
MW-9	T-924	10/01	138.07	33	13.14	1,903	60	879	0.2	0.000119	1.0	22.01
MW-10	T-925	10/04	~4 ft. of head (Artesian)	50	47.65	2,369	45	436	0.2	0.000119	0.26	6.34
MW-11	T-926	09/24	29.36	3	60.04	180	60	~8	0.2	0.2076	0.01084	0.13
MW-12	T-927	10/02	30.5	100	18.45	12,108	120	2,422	0.2	0.000903	1.0	73.51
MW-13	T-928	10/02	27.99	65	31.06	8,828	105	1,505	0.2	0.000514	0.537	25.08

Q – Flow rate measured in gallons per minute

6 WATER QUALITY ANALYSIS

Kleinfelder assisted LADWP personnel collect groundwater samples from the 14 monitoring wells after well development had occurred. Kleinfelder provided submersible sampling pumps, electric generator, and labor to deploy and operate the equipment. LADWP personnel collected the samples and transported them to their environmental laboratory in Los Angeles. The results of the water quality analyses are summarized in Table 4, Water Quality Results for 14 Owens Lake Monitoring Wells (prepared by LADWP). The results of the Water Quality Analyses and graphical presentations of concentrations of metals and general chemistry (prepared by LADWP) are provided in Appendix F, Water Quality Results.

CA Department of Public Health - January 20, 2013 Update

MCL - Maximum Contaminant Level PHG - Public Health Goal

Table 4 - Water Quality Results for 14 Owens Lake Monitoring Wells

May 2013 Secondary EPA MCLs

http://water.epa.gov/drink/contaminants/secondarystandards.cfm

				Well Number	r									neep.// water	.cpa.gov/ armi	усопсинни	its/secondary	<u>Starradras.c</u>	<u></u>	
																		MCL	PHG	Secondary
		Method	Analysis Requested	T918	T919	T920	T921	T922	T923	T924	T925	T926	T927	T928	T929	T930	T931	(mg/L)	(mg/L)	MCL (mg/L)
		EPA 300.0	Nitrite-N (mg/L)	< 0.03	< 0.03	1.34	0.44	0.43	< 0.03	0.19	0.02	< 0.03	< 0.03	< 0.03	0.23	0.31	< 0.03	1	1	
		EPA 300.0	Chloride (mg/L)	2080	228	5.07	25.1	8.84	577	5.39	34.3	20.8	1727	232	77	18.3	16.0			250
		EPA 300.0	Phosphate (mg/L)	0.69	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
		EPA 300.0	Sulfate (mg/L)	141	151	6.86	30.6	9.12	275	46.1	43.8	15.4	806	416	14.9	57.2	51.5			
		SM 2540 C	TDS (mg/L)	6250	1603	154	290	125	2858	257	227	246	4490	1213	646	456	453			500
		SM 4500 NH3 G	Ammonia-N (mg/L)	67.7	2.45	< 0.2	0.42	< 0.2	2.13	< 0.2	< 0.2	< 0.2	0.30	< 0.2	5.69	< 0.2	3.44			
		SM 2320 B	Alkalinity (mg/L)	2468	912	80	188	74	1198	126	58	152	172	230	410	254	310			
		SM 2320 B	Carbonate (mg/L)	2320	92	0	88	0	0	0	20	0	0	104	0	0	0			
		SM 5310 C	TOC (mg/L)	37	2.9	< 0.4	2.6	< 0.4	1.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.79	0.77	2.5			
		SM 4500 H+B	рН		12.0	7.43	11.03	7.44	6.81	7.39	9.12	7.72	6.95	8.75	7.75	7.5	7.08			6.5 - 8.5
		EPA 120.1	Specific Conductivity (us/cm)	10350	5050	204	732	202	4570	367	170	390	7010	2070	1120	710	790			
		EPA 180.1	Turbidity (ntu)	938	32.2	35.7	284	3.74	98.3	< 1	< 1	13.4	4.42	2.14	2.14	208	9.52			
		EPA 200.7	Boron (mg/L)	25.5	3.93	< 0.009	0.105	< 0.009	21.0	0.05	0.055	0.432	22.8	8.46	1.75	0.088	0.309			
		EPA 200.7	Lithium (mg/L)	0.319	0.124	0.025	0.057	0.043	0.849	0.053	0.149	0.030	0.752	0.319	0.779	0.061	0.060			
		EPA 200.7	Magnesium (mg/L)	29.1	0.365	3.93	6.8	6.44	34.0	2.98	10.2	7.31	27.1	4.08	48.8	13.1	18.1			
		EPA 200.7	Manganese (mg/L)	0.893	0.028	0.378	0.484	0.146	0.874	0.165	0.937	0.115	0.151	0.398	0.129	0.363	0.586			0.05
		EPA 200.7	Sodium (mg/L)	3690	585	14.7	63.1	9.09	957	47.8	17.0	39.5	1790	488	106	86.5	75.7			
		EPA 200.7	Antimony (mg/L)	0.0218	ND	ND	ND	0.00580J	ND	0.00610J	ND	ND	ND	ND	0.0145	0.00700J	0.00700J	-	0.0007	
I Detection Limit I detection limit and below RL		EPA 200.7	Arsenic (mg/L)	0.182	0.0883	ND	0.0238J	ND	0.0351	0.00730J	0.0277	0.0095J	0.0426	0.105	0.0217	0.0399	ND	0.01	0.000004	
on Li		EPA 200.7	Barium (mg/L)	0.279	0.0579	0.0503	0.111	0.0149J	0.170	0.0172J	0.00760J	0.0415	ND	0.0214J	0.099	0.0541	0.0808	1	2	
d Detection od detection and below		EPA 200.7	Beryllium (mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.001	
oete dete d be		EPA 200.7	Cadmium (mg/L)	0.00270J	ND	ND	0.00180J	ND	ND	ND	ND	ND	ND	ND	ND	0.00140J	ND	0.005	0.001	
od o		EPA 200.7	Chromium (T) (mg/L)	0.0993	0.0072J	0.0269	0.0867	0.0145J	0.00770J	0.00730J	0.00780J	0.0174J	0.000610J	ND	0.0120J	0.0754	ND	0.05	-	
Method [/ method e MDL an		EPA 200.7	Cobalt (mg/L)	0.0126	ND	ND	0.00770	ND	ND	ND	ND	ND	ND	ND	ND	0.00350J	ND			
ve Z	Metals	EPA 200.7	Copper (mg/L)	0.0332J	ND	ND	0.0182J	ND	ND	ND	ND	ND	ND	ND	0.0110J	ND	ND	1.3*	0.3	1.0
MDL: belov	Me	EPA 200.7	Lead (mg/L)	0.0554	0.00900J	0.0113J	0.0233	ND	0.00780J	0.00710J	ND	ND	0.00690J	0.00600J	0.0134J	0.0172J	0.0115J	0.015*	0.0002	
a;b	_	EPA 200.7	Molybdenum (mg/L)	0.133	0.0349	0.0199	0.0496	0.0189	0.0760	0.0333	0.00450J	0.0220	0.0684	0.0147	0.0047J	0.0741	0.00810			
Limit, etecteo entrati		EPA 200.7	Nickel (mg/L)	0.0598	0.0149J	ND	0.0428J	ND	0.0178J	ND	ND	ND	0.0374J	ND	ND	0.0401J	ND			
Lin		EPA 200.7	Selenium (mg/L)	0.0304J	0.0210J	0.0126J	0.0145J	ND	0.0197J	0.0274J	ND	ND	ND	ND	0.0201J	ND	ND	0.05	0.03	
Report Limit, MDL-I-Not Detected; below		EPA 200.7	Silver (mg/L)	ND	ND	ND	ND	ND	ND	0.00400J	ND	0.00600J	0.00620J	ND	ND	ND	ND			0.1
Ref - Nc		EPA 200.7	Thallium (mg/L)	ND	0.00480J	ND	0.00420J	0.00610J	ND	ND	ND	0.0092J	ND	0.00700J	0.0106J	ND	0.00660J	0.002	0.0001	
- N		EPA 200.7	Vanadium (mg/L)	0.429	ND	ND	0.0811	ND	ND	ND	ND	ND	ND	ND	ND	0.0206J	ND			
		EPA 200.7	Zinc (mg/L)	0.166	0.0535	0.0114	0.468	0.205	0.313	0.252	0.501	0.105	0.116	0.0268	0.0777	0.491	0.108			5

^{*} They are called "Action Levels" under the lead and copper rule (not actually MCLs).

7 LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

8 REFERENCES

Bentley Systems Inc., 2012, gINT® v. 8.3, geotechnical software.

- Bourdet, D., Ayoub, J.A. and Y.M. Pirard, 1989. Use of pressure derivative in well-test interpretation, SPE Formation Evaluation, June 1989, pp. 293-302.
- Bradford, GR, AC Chang, AL Page, D Bakhtar, JA Frampton, and H Wright. 1996. Background Concentrations of Trace Metals and Major Elements in California Soils, Kearney Foundation of Soil Science, Division of Agriculture and Natural Resources, University of California, March.
- California Geologic Survey, 2002, California Geomorphic Provinces, Note 36
- Duffield, Glenn M., AQTESOLV® v.4.50, HydroSOLVE, Inc., 2007.
- Hollett, Kenneth J., Danskin, Westley R., McCaffrey, William F., Walti, Caryl L., 1991 Geology and Water Resources of Owens Valley, California, Chapter B, US Geological Survey Water Supply Paper 2370.
- Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed gravity response of the water table, Water Resources Research, vol. 8, no. 4, pp. 1031-1045.
- Neuman, S.P., 1974. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response, Water Resources Research, vol. 10, no. 2, pp. 303-312.
- Spane, F.A., Jr., and S.K. Wurstner, 1993. DERIV: A computer program for calculating pressure derivatives for use in hydraulic test analysis, Ground Water, vol. 31, no. 5, pp. 814-822.
- Tartakovsky, G.D. and S.P. Neuman, 2007. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer, Water Resources Research, W01410, doi:1029/2006WR005153.

PLATE

SOURCE: GOOGLE EARTH PRO 2013, DATED 4/09/13. 2 mile 1 mile 2 mile

•MW-10/T-925

APPROXIMATE SCALE (feet)

KLEINFELDER Bright People. Right Solutions. www.kleinfelder.com

	PROJECT NO.	135335	-
	DRAWN:	12/2013	
)	DRAWN BY:	MRG	
	CHECKED BY:	DH	
	FILE NAME:		
	135335p1_SLM-v2.d	lwg	

SITE LOCATION MAP

PLATE

1

AGREEMENT 47805 TO-19 GROUNDWATER MONITORING WELL INSTALLATION OWENS LAKE, CALIFORNIA

APPENDIX A

Boring Logs

Project Location: 3001 Rt. 190 Olancha, Ca

Consultant: Kleinfelder Consultant Project No.: 135335

Key to Log of Boring

Sheet 1 of 2

CONSISTENCY OF COHESIVE SOILS									
Descriptor	Unconfined Compressive Strength (tsf)	Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation					
Very Soft	< 0.25	< 0.25	< 0.12	Thumb will penetrate soil more than 1 in.					
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Thumb will penetrate soil about 1 in.					
Firm	0.50 - 2.0	0.50 - 2.0	0.25 - 1.0	Thumb will indent soil about 1/4 in.					
Hard	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Thumb will not indent soil but soil is readily indented with thumbnail					
Very Hard	> 4.0	> 4.0	> 2.0	Thumbnail will not indent soil					

APPARENT DENSITY OF COHESIONLESS SOILS							
Descriptor	SPT N ₆₀ - Value (blows / foot)						
Very Loose	0 - 4						
Loose	5 - 10						
Medium Dense	11 - 30						
Dense	31 - 50						
Very Dense	> 50						

	MOISTURE					
Descriptor	Criteria					
Dry	Absence of moisture, dusty, dry to the touch					
Moist	Damp but no visible water					
Wet	Visible free water, usually soil is below water table					

PERCENT OR PROPORTION OF SOILS						
Descriptor	Criteria					
Trace	Particles are present but estimated to be less than 5%					
Few	5 to 10%					
Little	15 to 25%					
Some	30 to 45%					
Mostly	50 to 100%					

SOIL PARTICLE SIZE							
Descriptor		Size					
Boulder		> 12 inches					
Cobble		3 to 12 inches					
Gravel	Coarse	3/4 inch to 3 inches					
Gravei	Fine	No. 4 Sieve to 3/4 inch					
	Coarse	No. 10 Sieve to No. 4 Sieve					
Sand	Medium	No. 40 Sieve to No. 10 Sieve					
	Fine	No. 200 Sieve to No. 40 Sieve					
Silt and Clay		Passing No. 200 Sieve					

	PLASTICITY OF FINE-GRAINED SOILS						
Descriptor	Criteria						
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.						
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.						
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.						
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.						

	CEMENTATION				
Descriptor	Criteria				
Weak	Crumbles or breaks with handling or little finger pressure				
Moderate	Crumbles or breaks with considerable finger pressure				
Strong	Will not crumble or break with finger pressure				

ANGULARITY		
Descriptor	Criteria	
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces	
Subangular	Particles are similar to angular description but have rounded edges	
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges	
Rounded	Particles have smoothly curved sides and no edges	

Project Location: 3001 Rt. 190 Olancha, Ca

Consultant: Kleinfelder Consultant Project No.: 135335

Key to Log of Boring

Sheet 2 of 2

CONSISTENCY OF COHESIVE SOILS				
Descriptor Unconfined Compressive Strength (tsf)		Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation
Very Soft	< 0.25	< 0.25	< 0.12	Thumb will penetrate soil more than 1 in.
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Thumb will penetrate soil about 1 in.
Firm	0.50 - 2.0	0.50 - 2.0	0.25 - 1.0	Thumb will indent soil about 1/4 in.
Hard	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Thumb will not indent soil but soil is readily indented with thumbnail
Very Hard	> 4.0	> 4.0	> 2.0	Thumbnail will not indent soil

APPARENT DENSITY OF COHESIONLESS SOILS		
Descriptor SPT N ₆₀ - Value (blows / foot)		
Very Loose	0 - 4	
Loose	5 - 10	
Medium Dense	11 - 30	
Dense	31 - 50	
Very Dense	> 50	

MOISTURE		
Descriptor	Criteria	
Dry	Absence of moisture, dusty, dry to the touch	
Moist	Damp but no visible water	
Wet	Visible free water, usually soil is below water table	

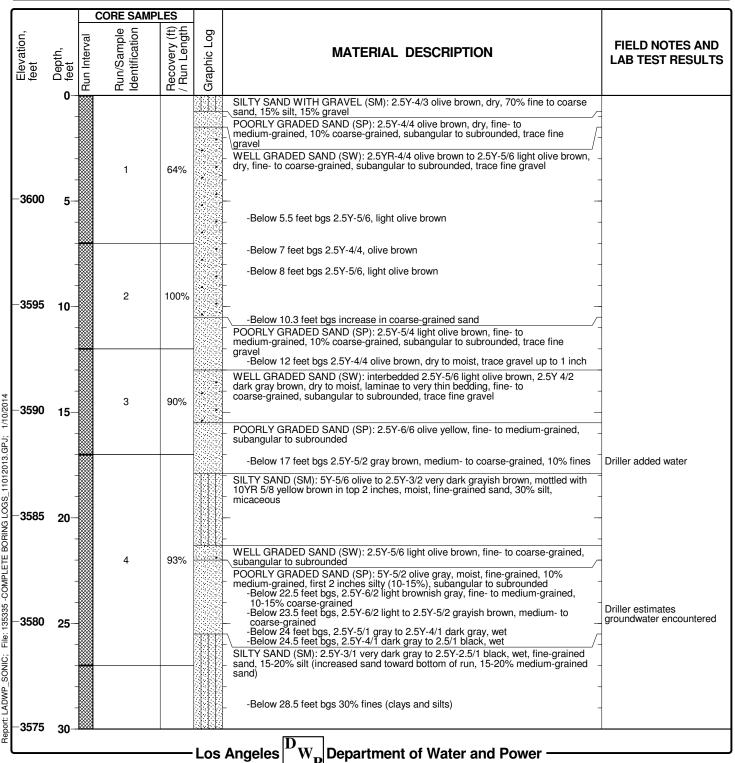
PERCENT OR PROPORTION OF SOILS		
Descriptor	Criteria	
Trace	Particles are present but estimated to be less than 5%	
Few	5 to 10%	
Little	15 to 25%	
Some	30 to 45%	
Mostly	50 to 100%	

SOIL PARTICLE SIZE			
Descriptor		Size	
Boulder		> 12 inches	
Cobble		3 to 12 inches	
Gravel	Coarse	3/4 inch to 3 inches	
	Fine	No. 4 Sieve to 3/4 inch	
	Coarse	No. 10 Sieve to No. 4 Sieve	
Sand	Medium	No. 40 Sieve to No. 10 Sieve	
	Fine	No. 200 Sieve to No. 40 Sieve	
Silt and Clay		Passing No. 200 Sieve	

PLASTICITY OF FINE-GRAINED SOILS		
Descriptor	Criteria	
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.	
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.	
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.	
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.	

CEMENTATION			
Descriptor	Criteria		
Weak	Crumbles or breaks with handling or little finger pressure		
Moderate	Crumbles or breaks with considerable finger pressure		
Strong	Will not crumble or break with finger pressure		

ANGULARITY		
Descriptor	Criteria	
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces	
Subangular	Particles are similar to angular description but have rounded edges	
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges	
Rounded	Particles have smoothly curved sides and no edges	

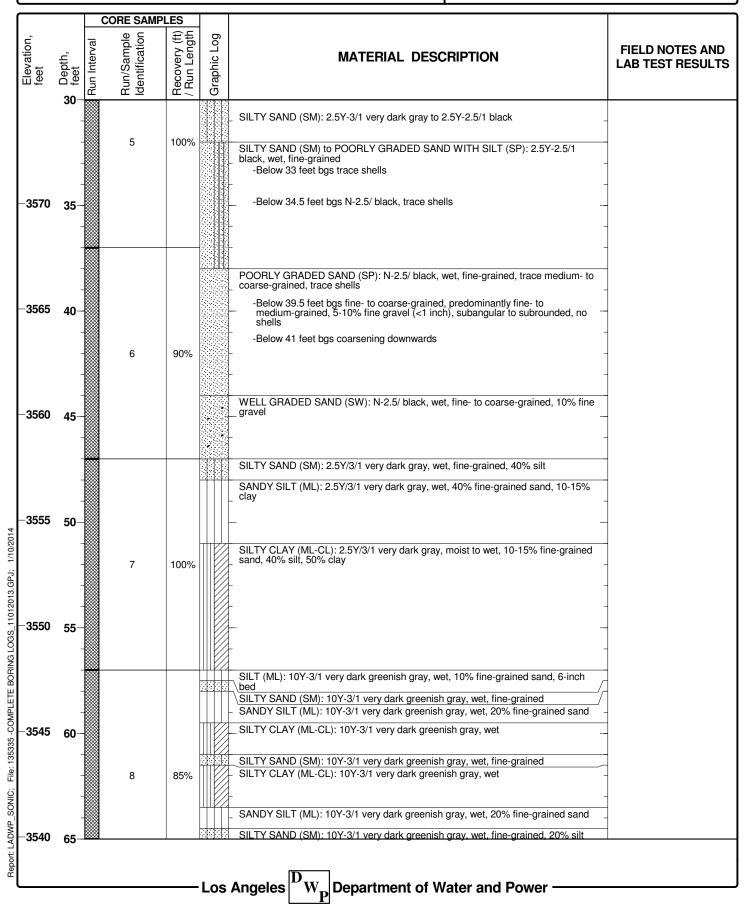

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 1 of 6

Date(s) Drilled	9/12/13 - 9/13/13	Logged By [Reg. No.] Michelle Garde [CEG #2604]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 197.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3604.9 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 24 ft	Borehole Completed as monitoring well	Borehole Location T-918/MW-3

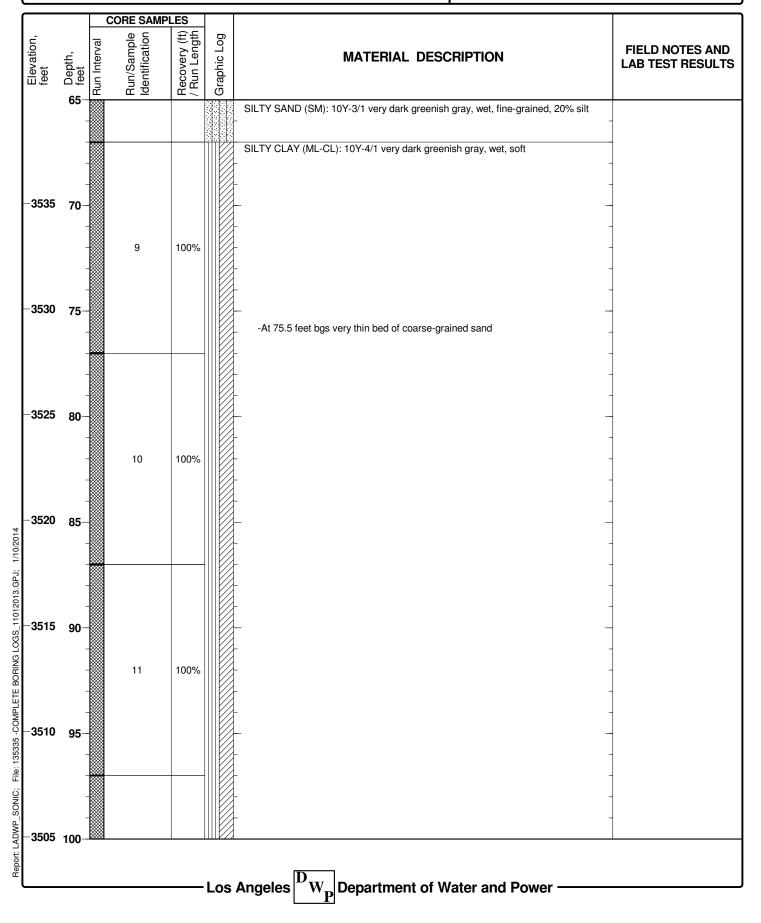


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 2 of 6

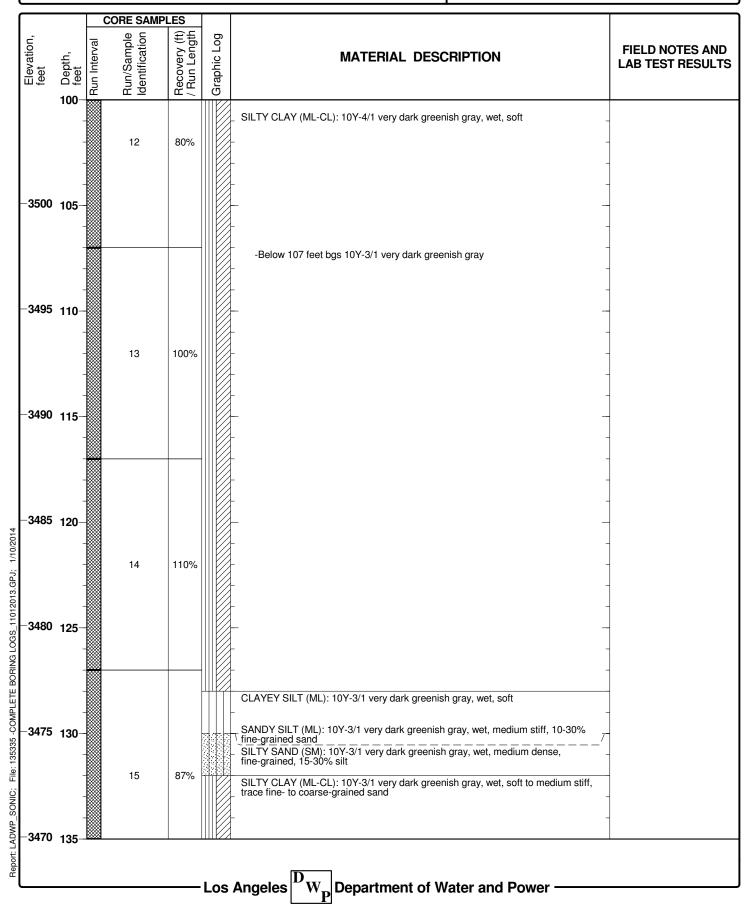


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 3 of 6

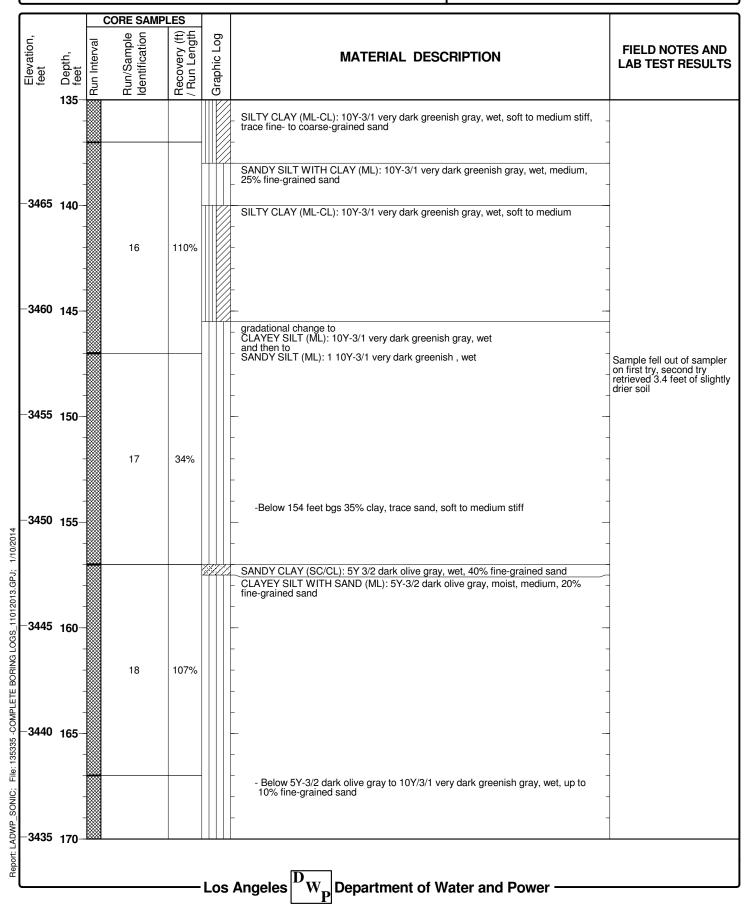


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 4 of 6

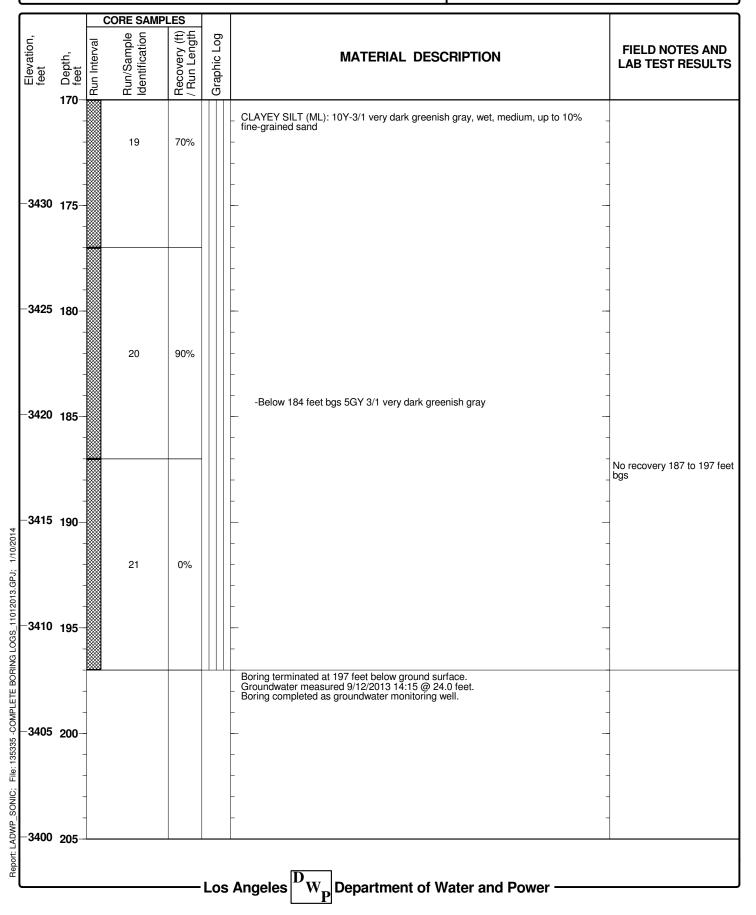


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 5 of 6

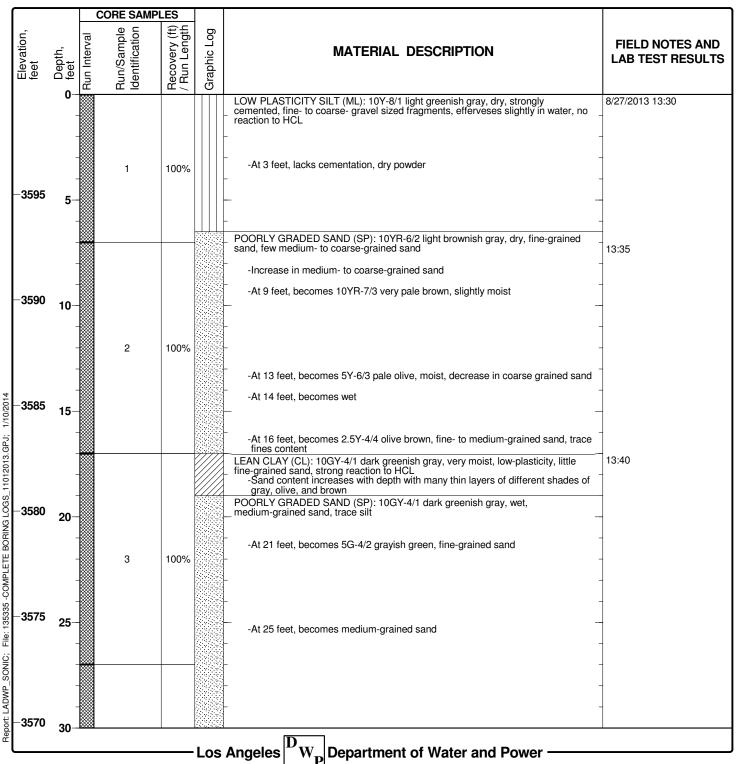


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-918

Sheet 6 of 6

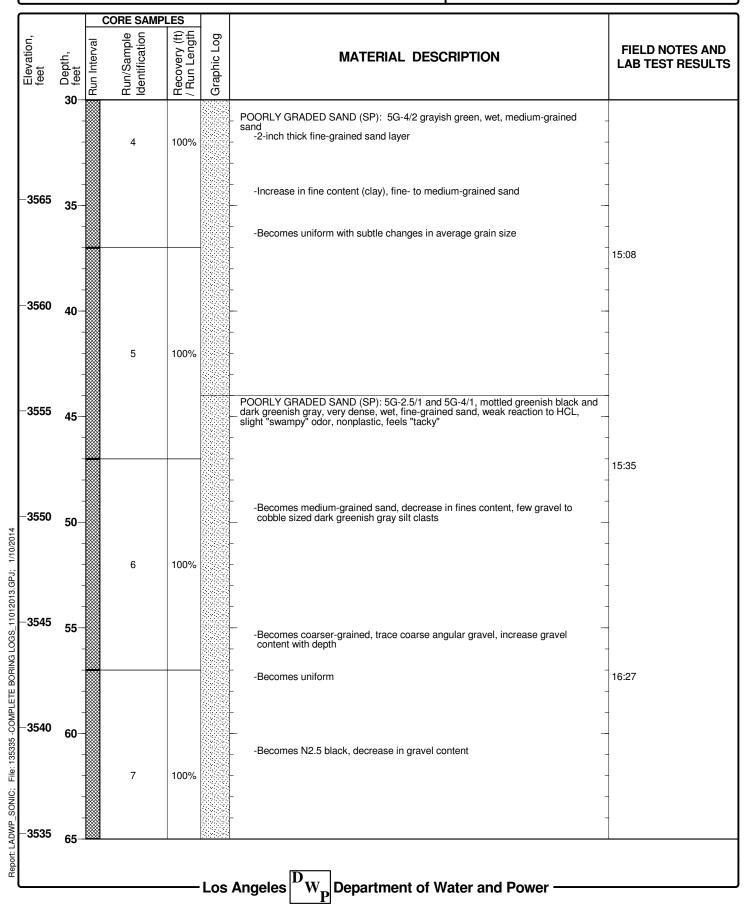

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 1 of 7

Date(s) Drilled	8/27/13 - 8/29/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 220.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3599.7 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	^{or} 14 ft	Borehole Completed as monitoring well	Borehole Location T-919/MW-4

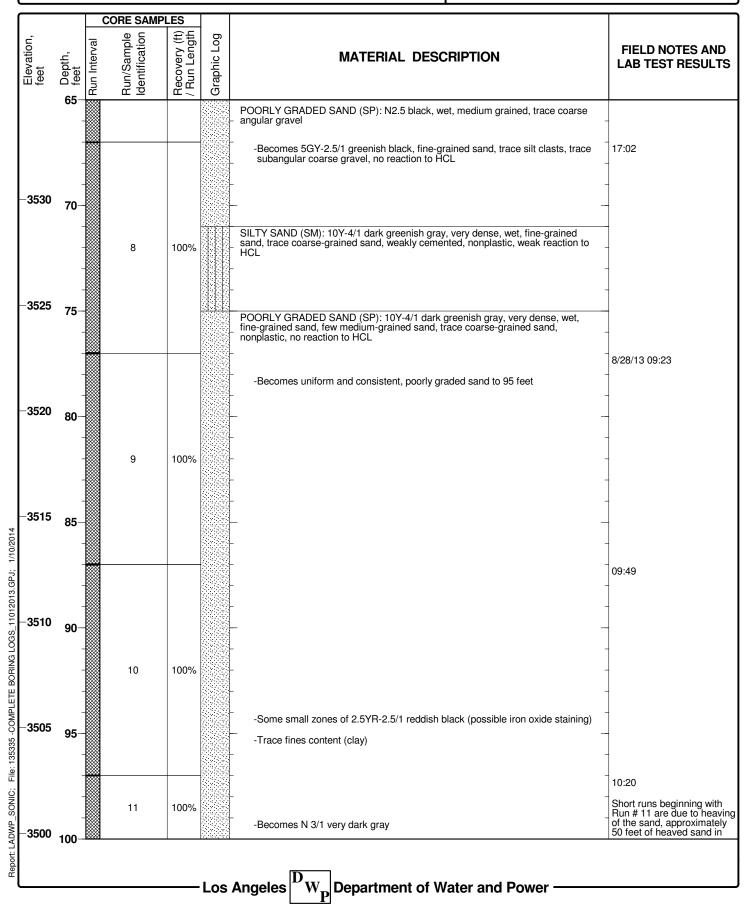


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 2 of 7

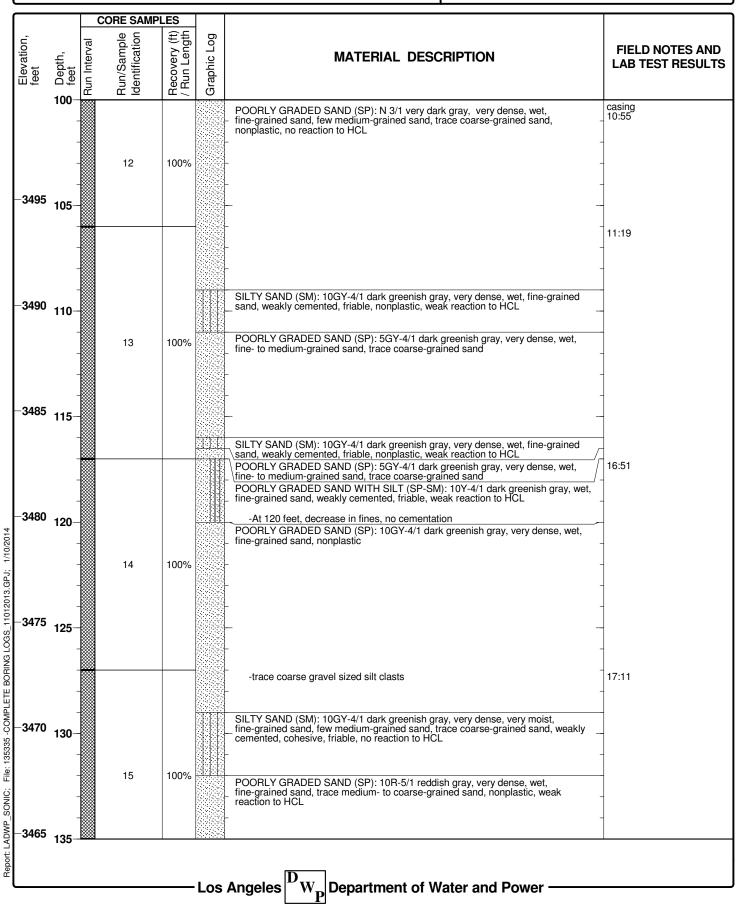


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 3 of 7

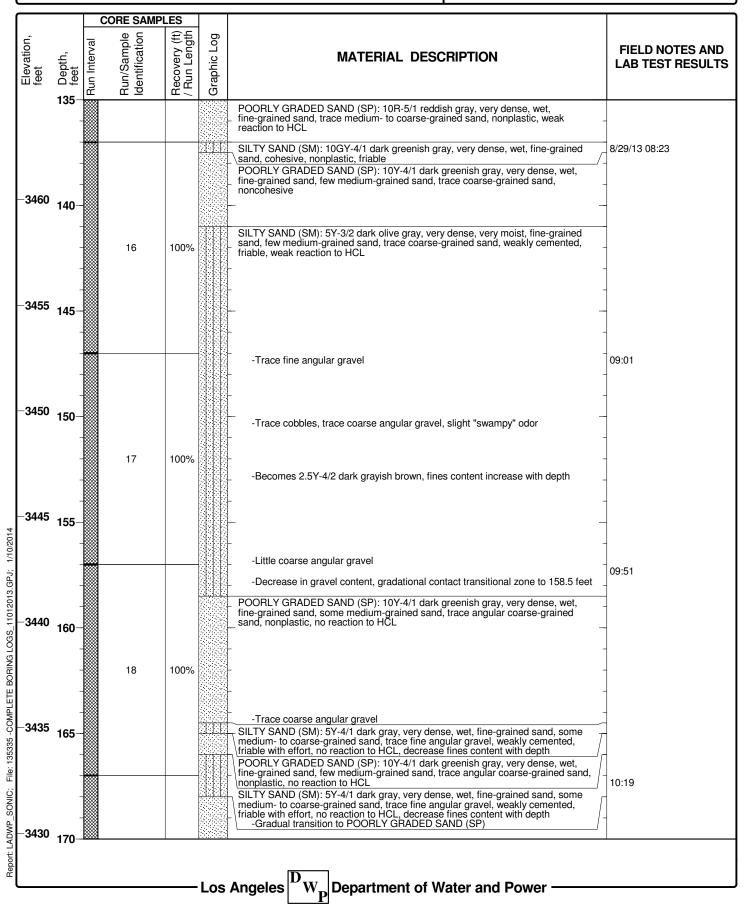


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 4 of 7

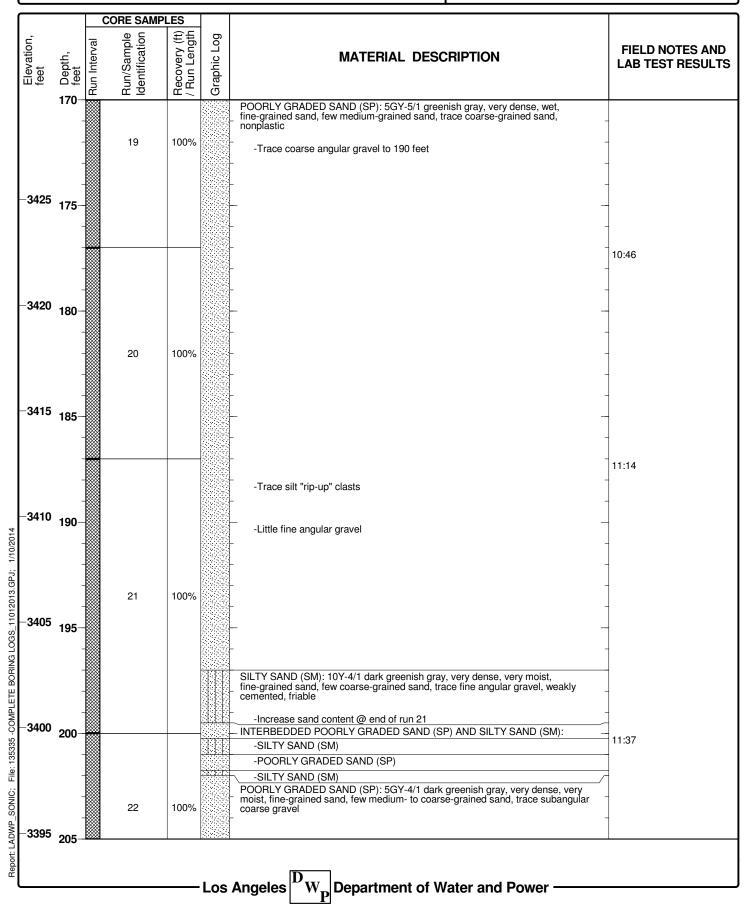


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 5 of 7

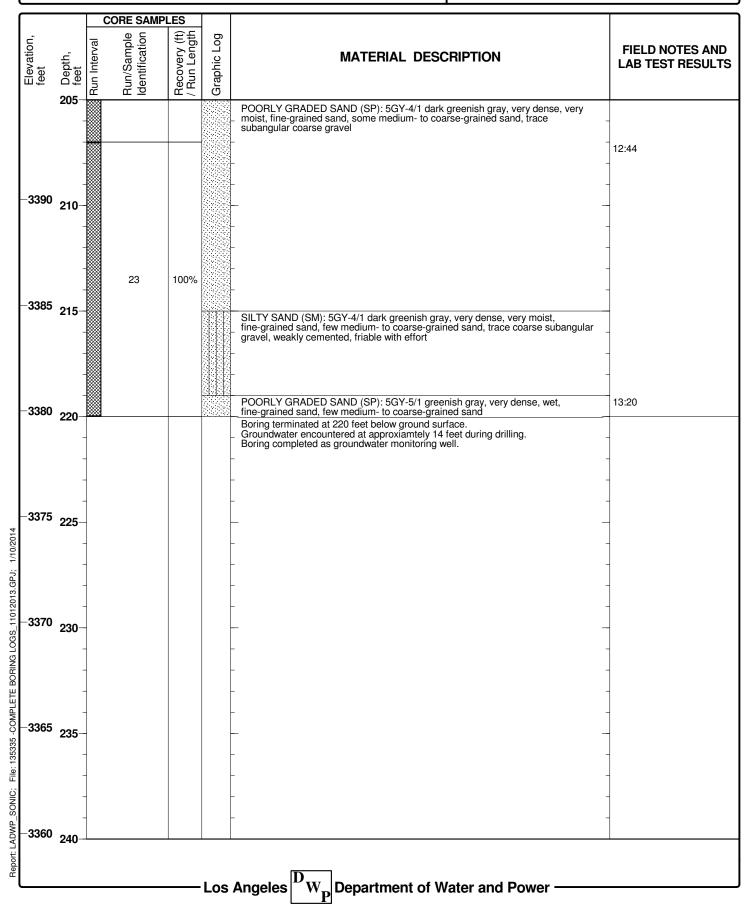


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 6 of 7

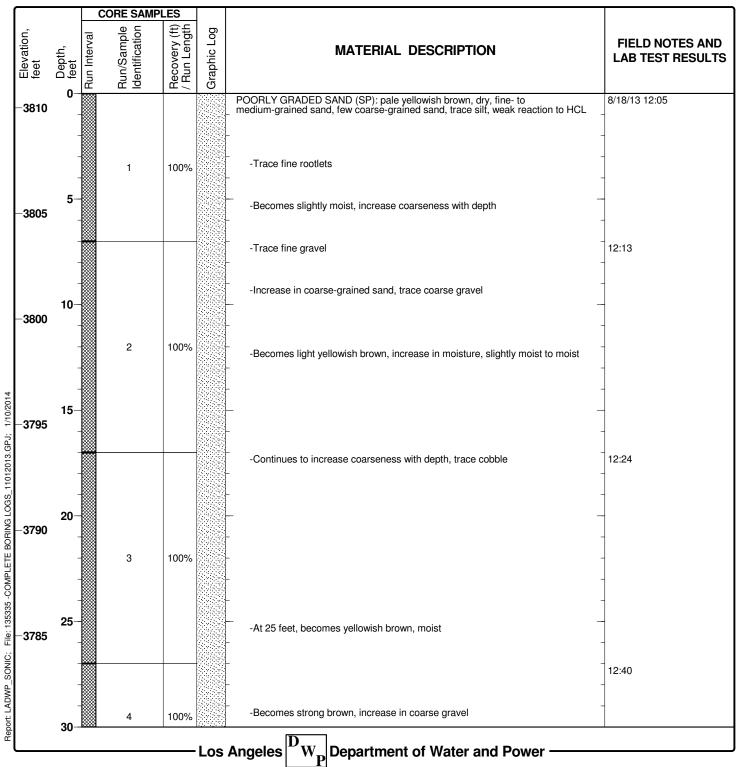


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-919

Sheet 7 of 7


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 1 of 8

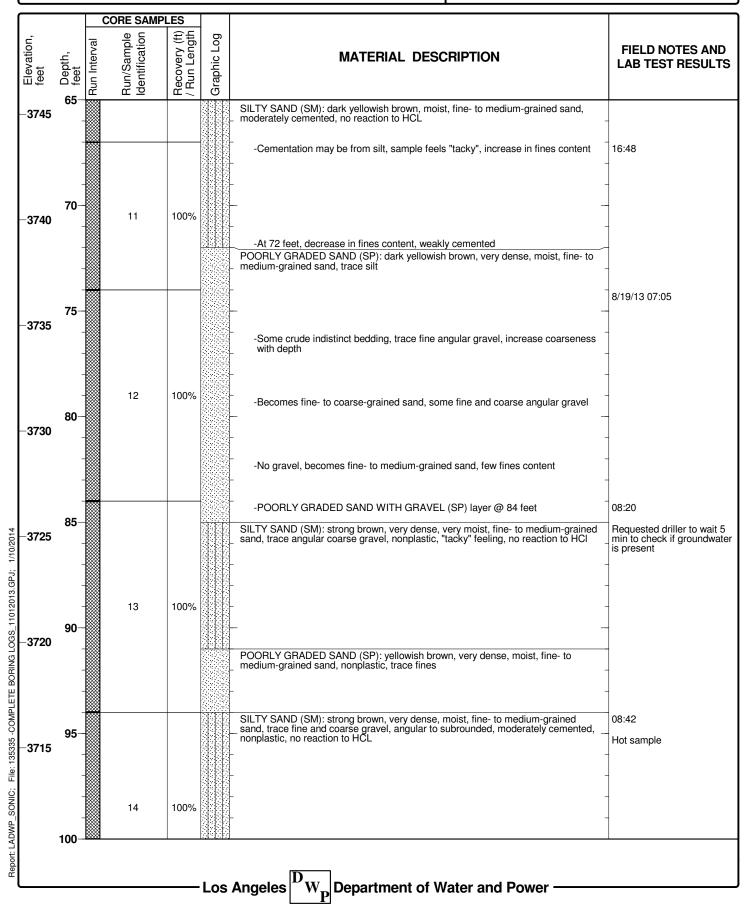
Date(s) Drilled	8/18/13 - 8/21/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 258.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3810.7 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 218 ft	Borehole Completed as monitoring well	Borehole Location T-920/MW-5

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 2 of 8

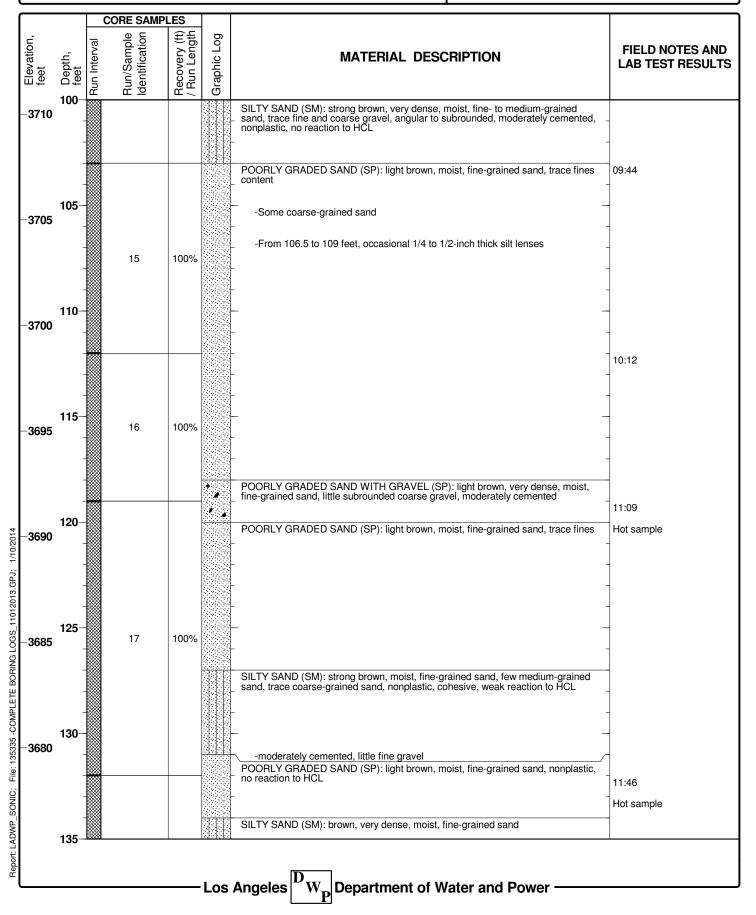


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 3 of 8

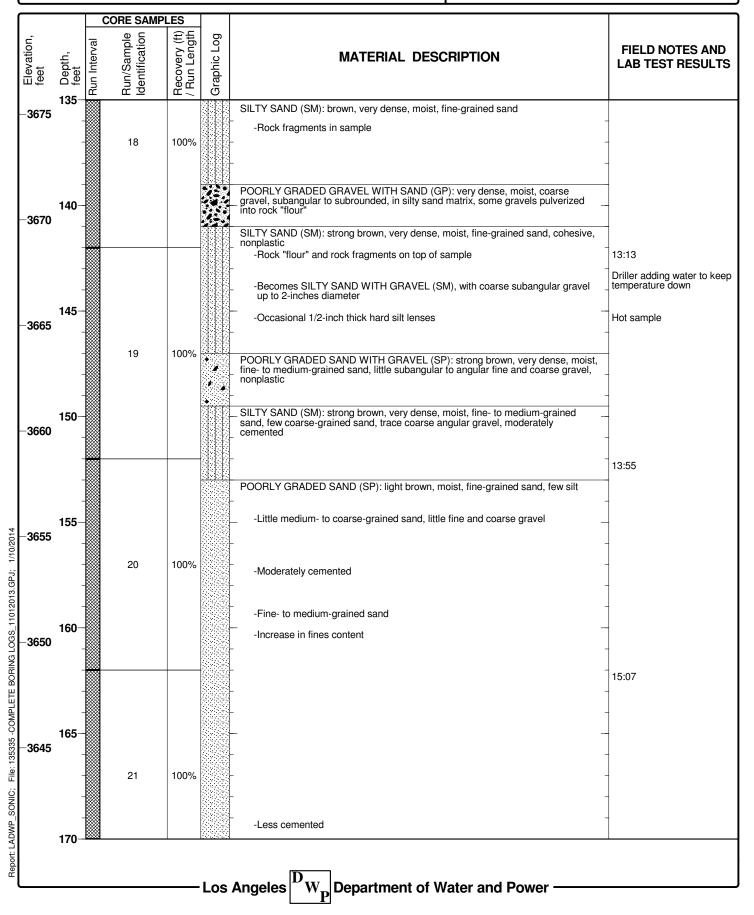


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 4 of 8

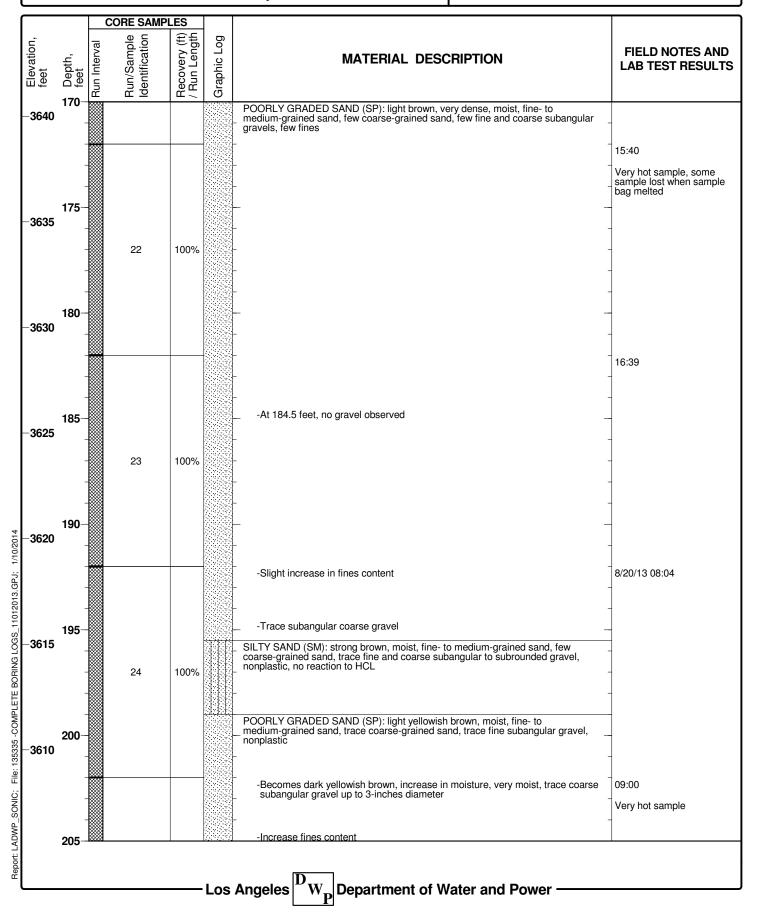


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 5 of 8

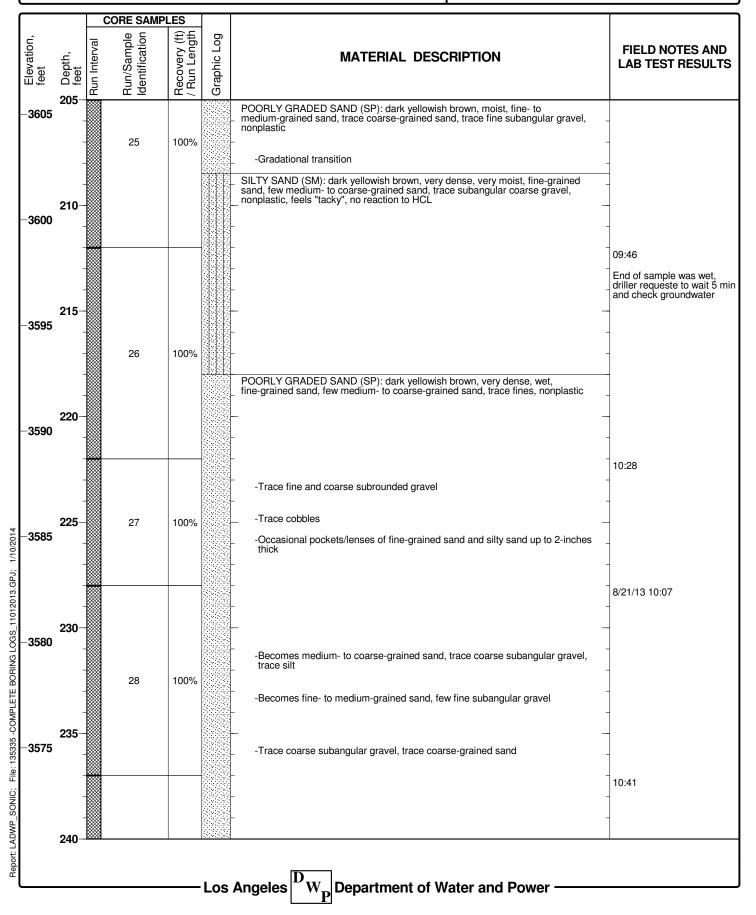


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 6 of 8

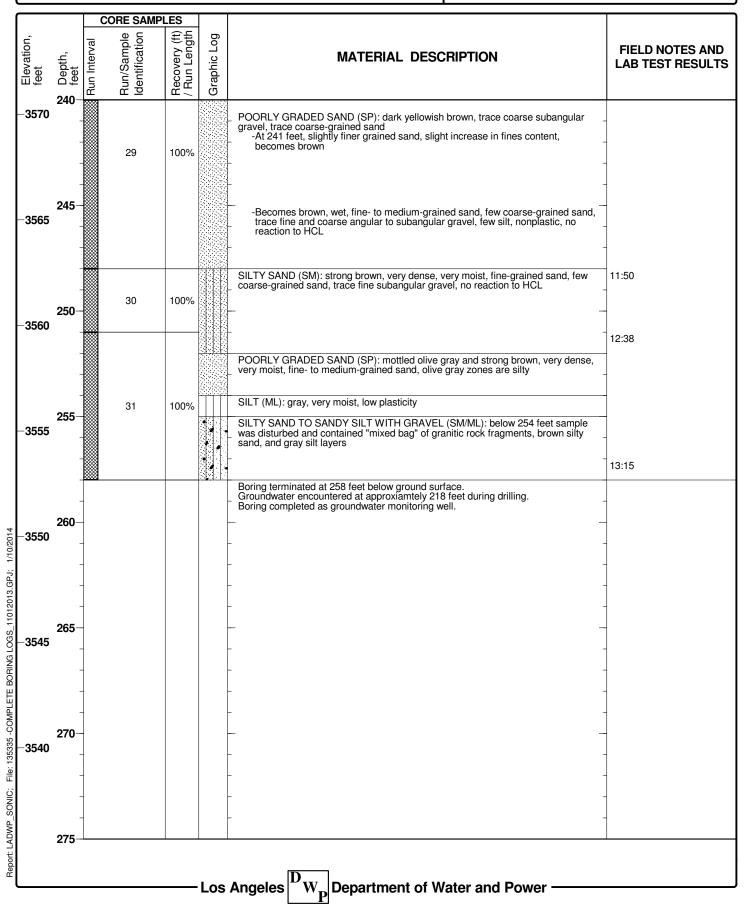


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 7 of 8

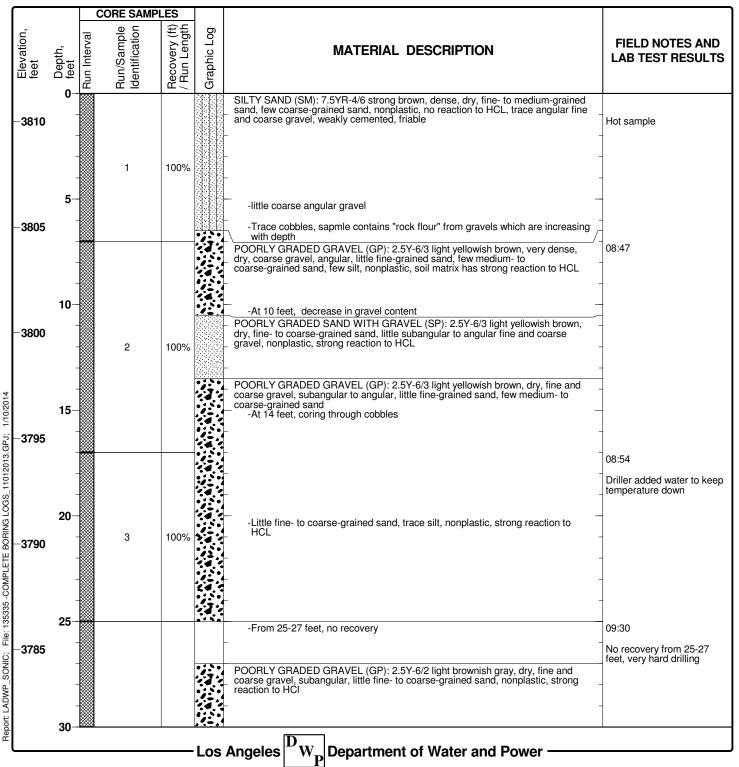


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-920

Sheet 8 of 8

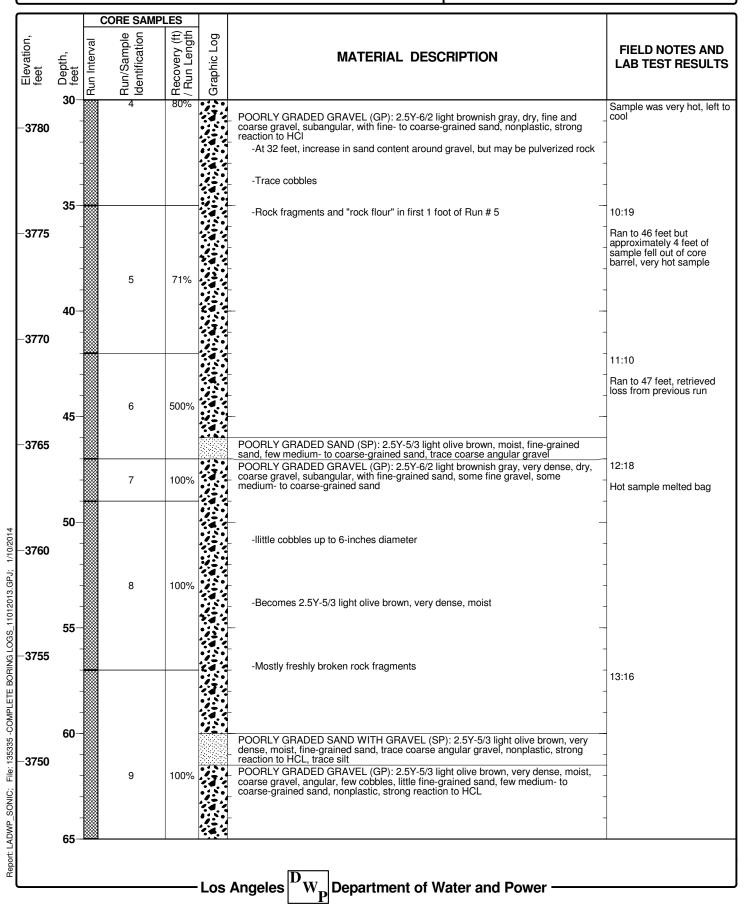

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 1 of 8

Date(s) Drilled	8/31/13 - 9/4/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 268.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3811.3 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 233 ft	Borehole completed as monitoring well	Borehole Location T-921/MW-6

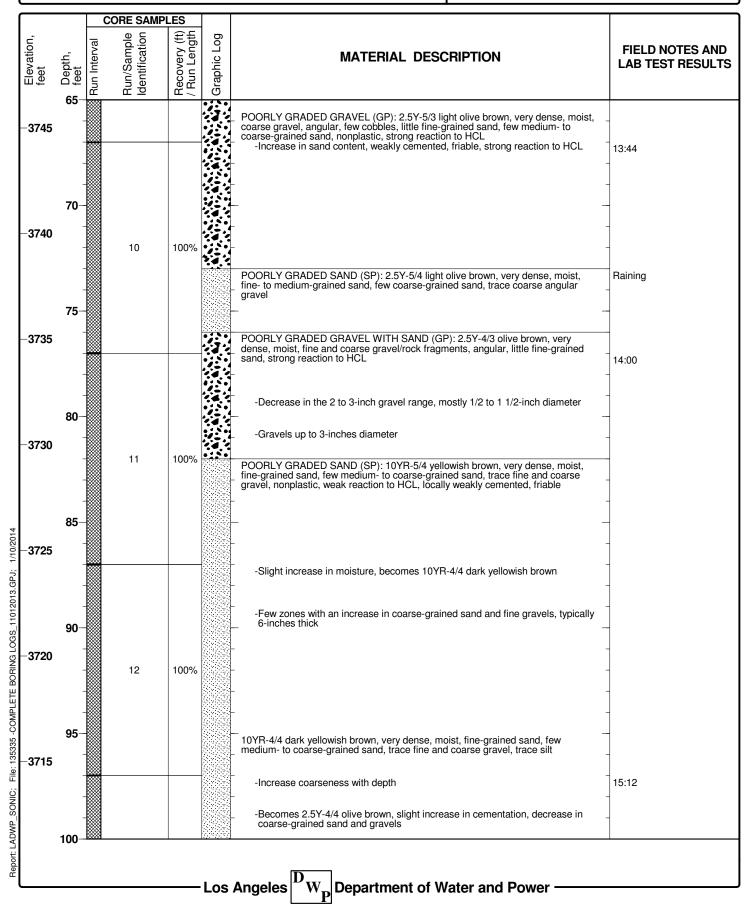


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 2 of 8

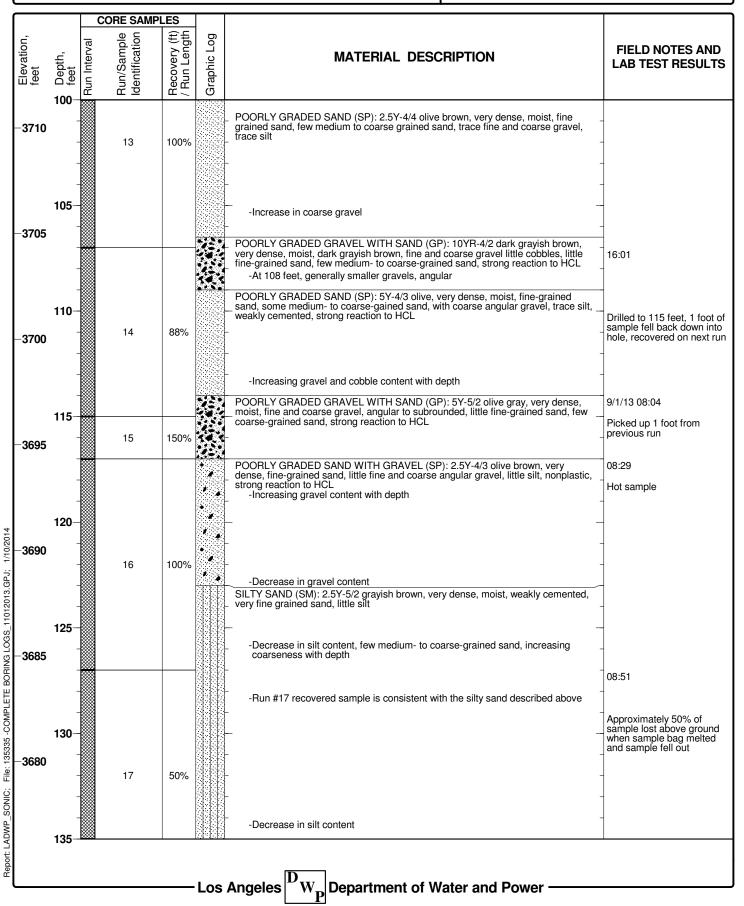


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 3 of 8

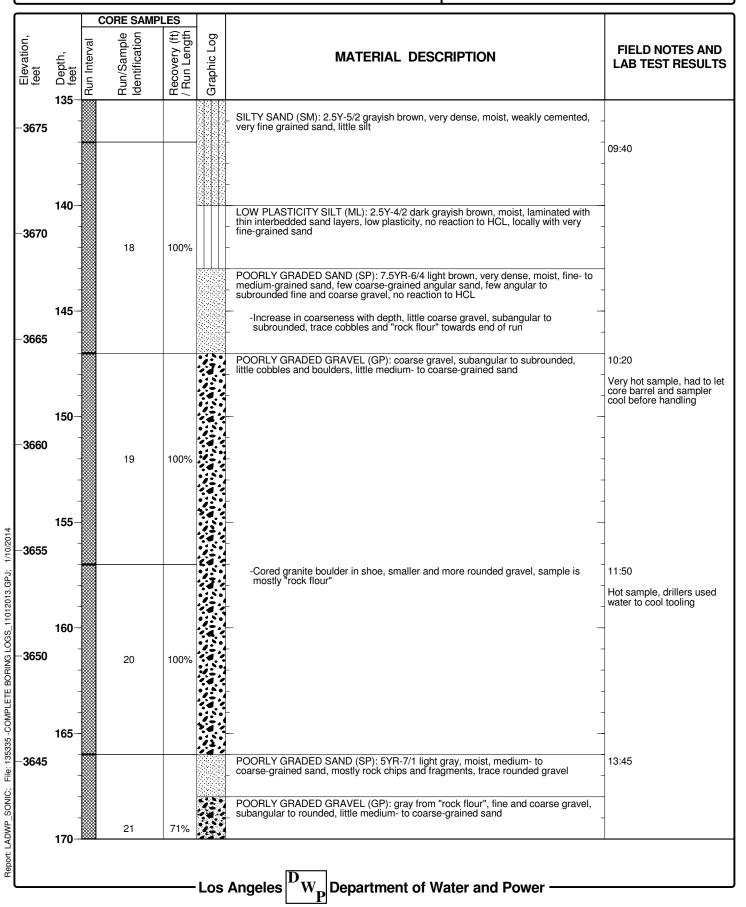


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 4 of 8

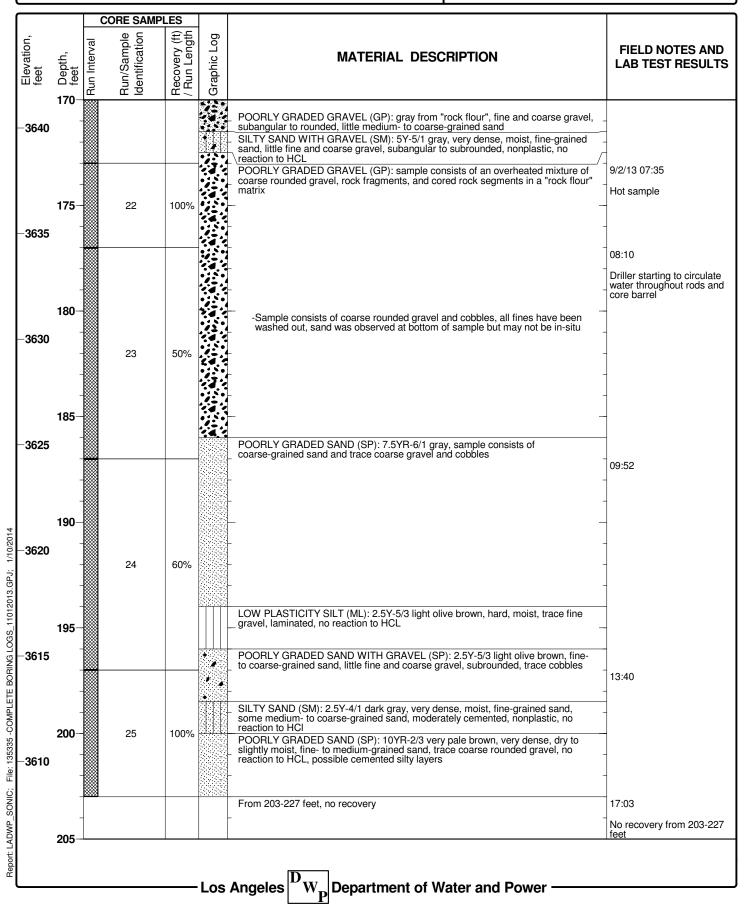


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 5 of 8

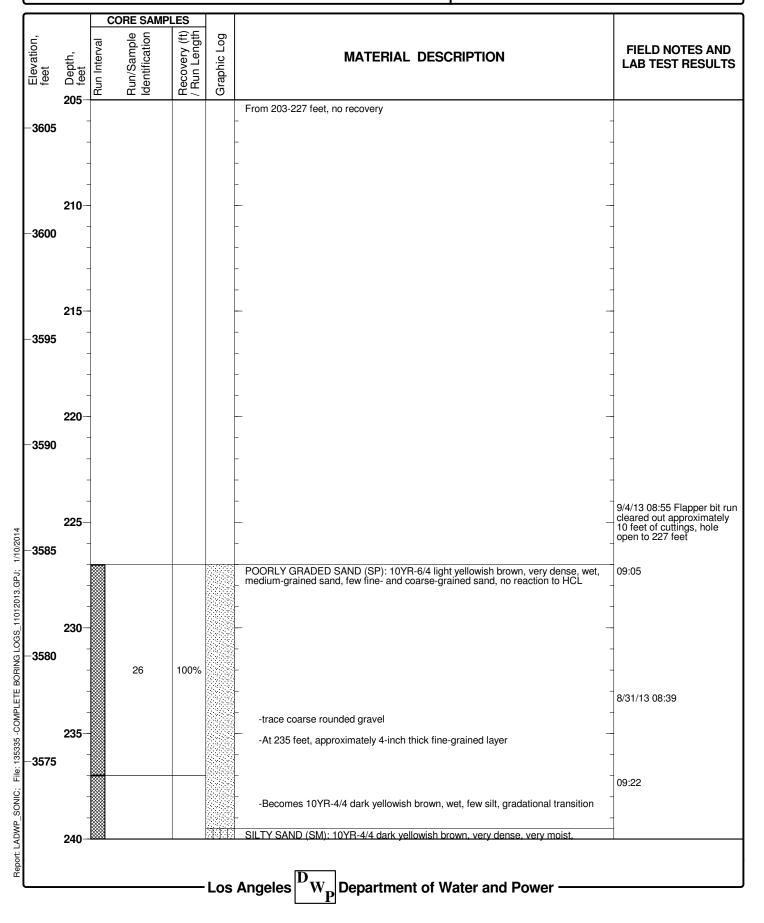


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 6 of 8

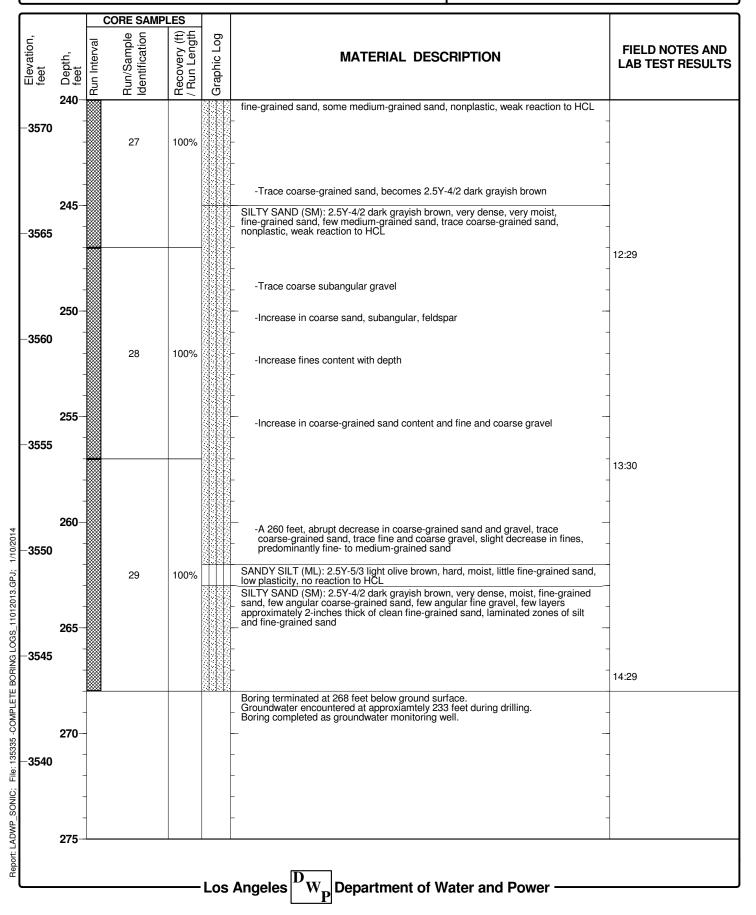


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 7 of 8

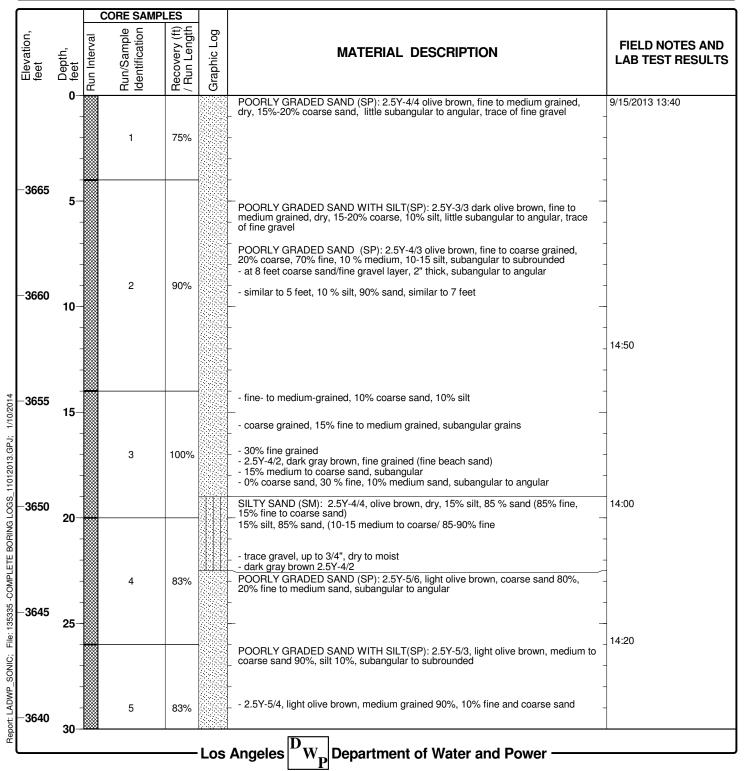


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-921

Sheet 8 of 8

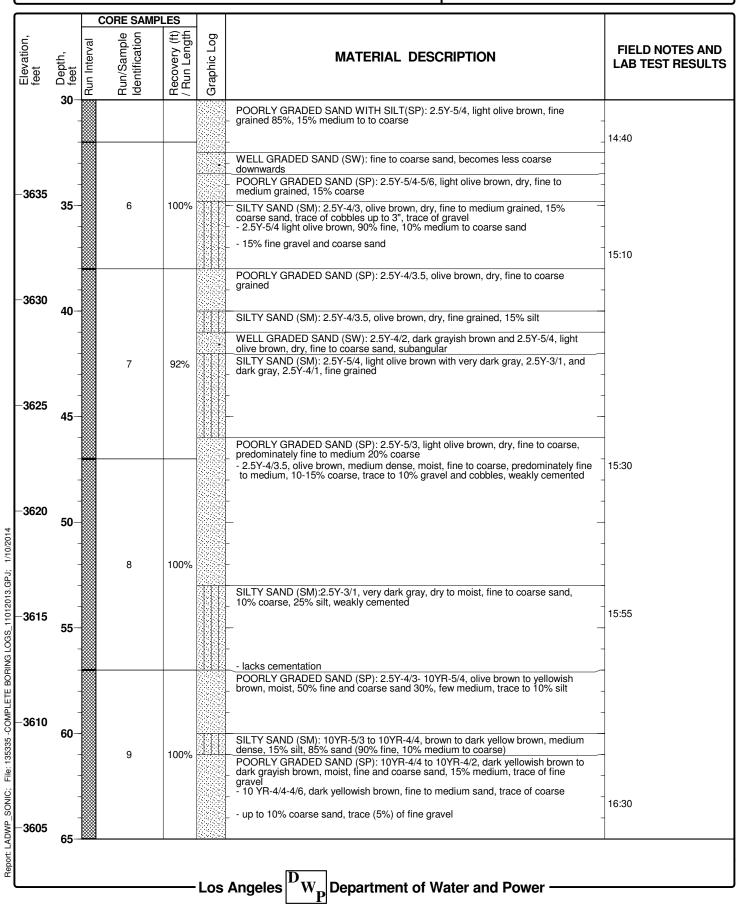

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-922

Sheet 1 of 5

Date(s) Drilled	9/15/13 - 9/19/13	Logged By [Reg. No.] Michelle Garde [CEG #2604]	Checked By Parrin Hasham [CEG Reg. No.] #2423]
Drilling Method	Sonic	Drill Bit Size/Type 7-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 138.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3669.5 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 78.2 ft	Borehole Completed as monitoring well	Borehole Location T-922/MW-7

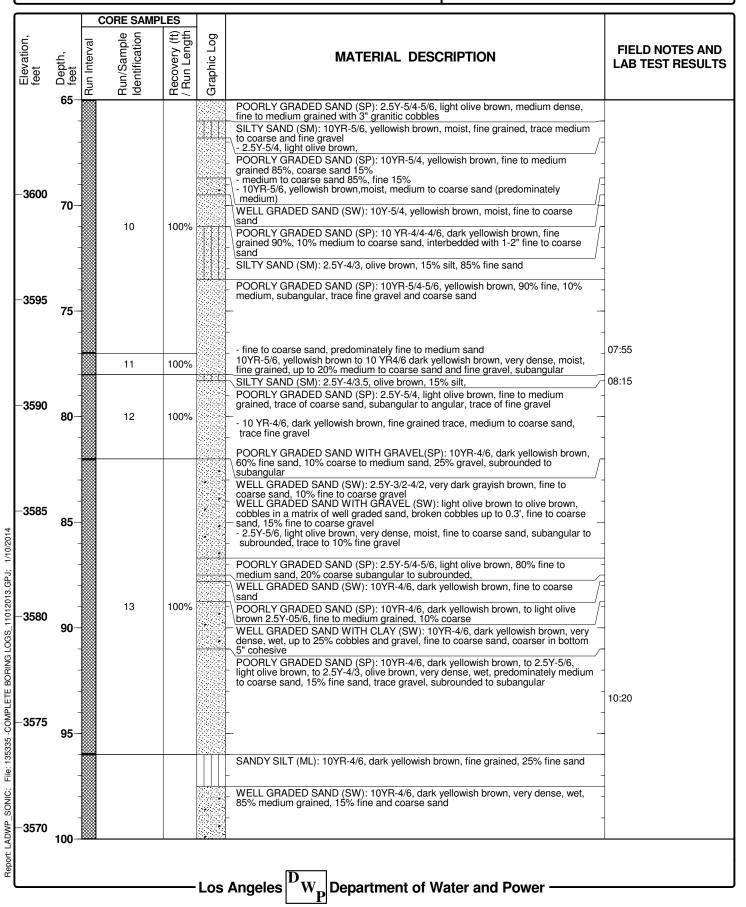


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-922

Sheet 2 of 5

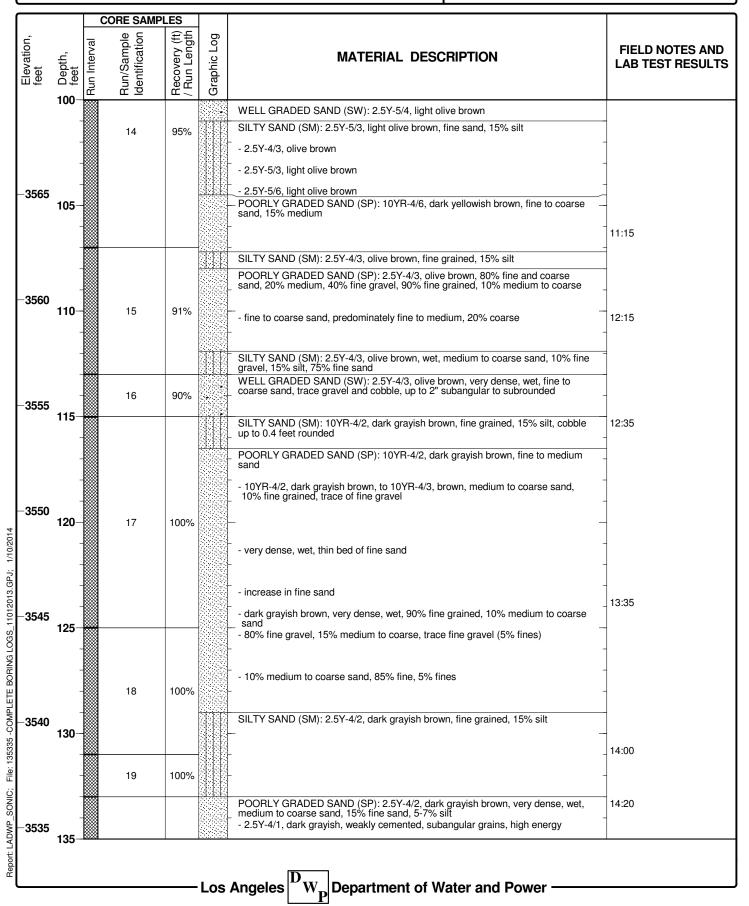


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-922

Sheet 3 of 5

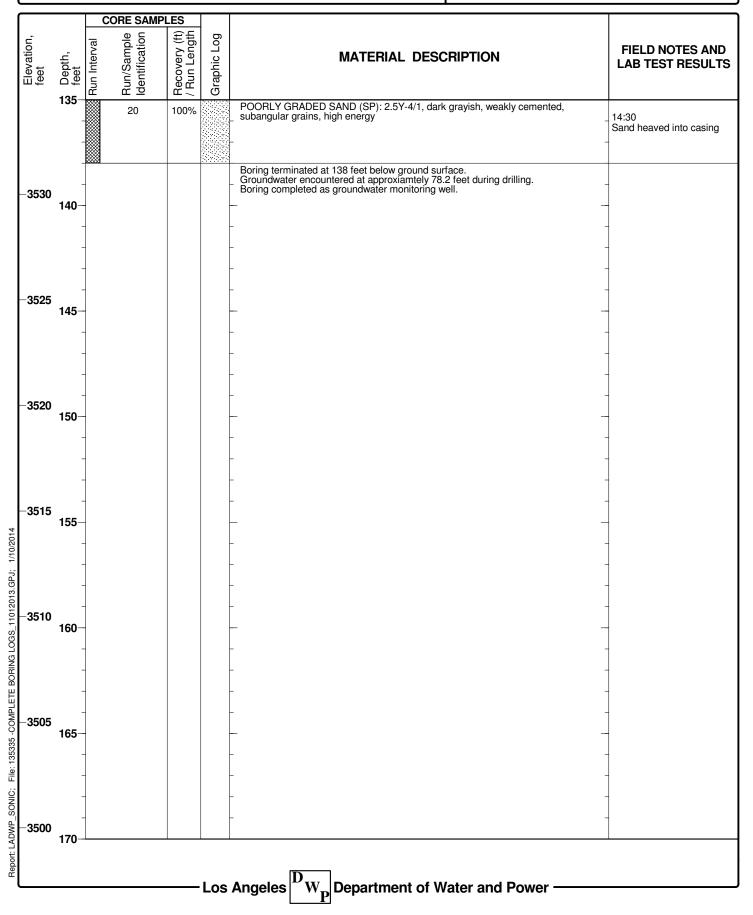


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-922

Sheet 4 of 5

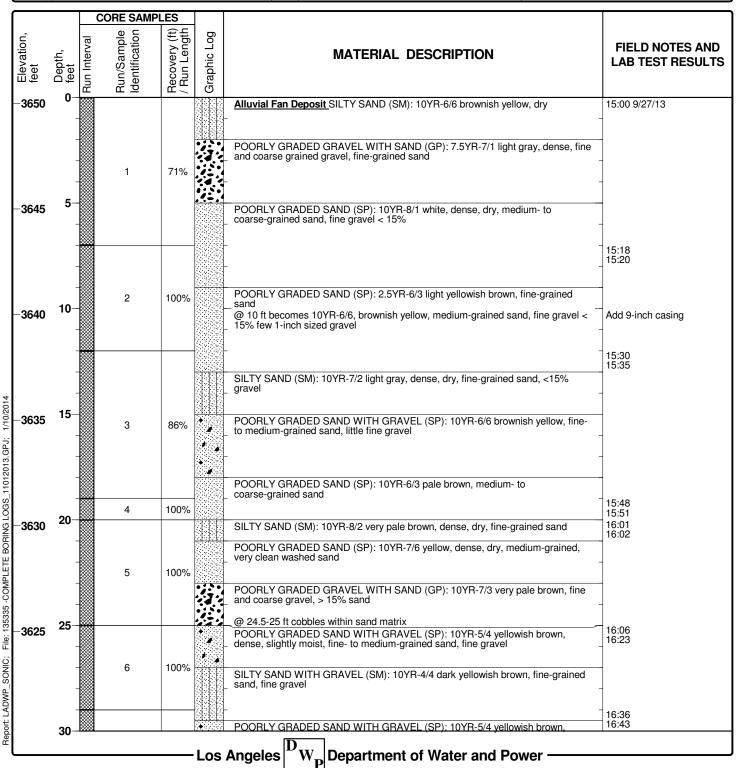


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-922

Sheet 5 of 5

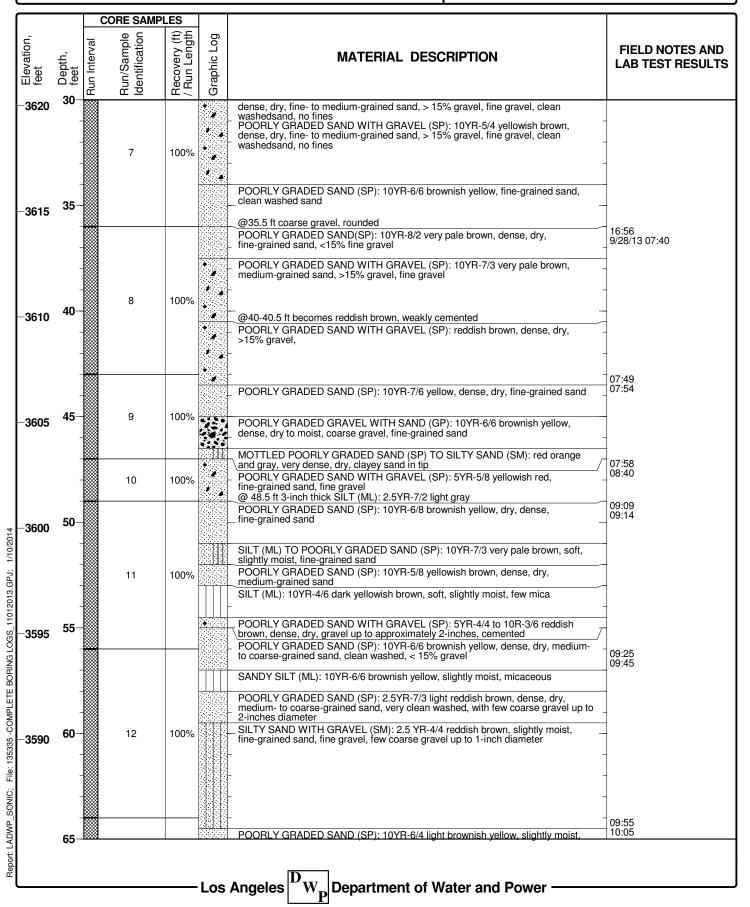

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-923

Sheet 1 of 4

Date(s) Drilled	9/27/13 - 9/28/13	Logged By [Reg. No.] Michael Cook [CEG #1716]	Checked By Darrin Hasham [CEG #2423]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 118.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3650.3 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 67 ft	Borehole Completed as monitoring well	Borehole Location T-923/MW-8

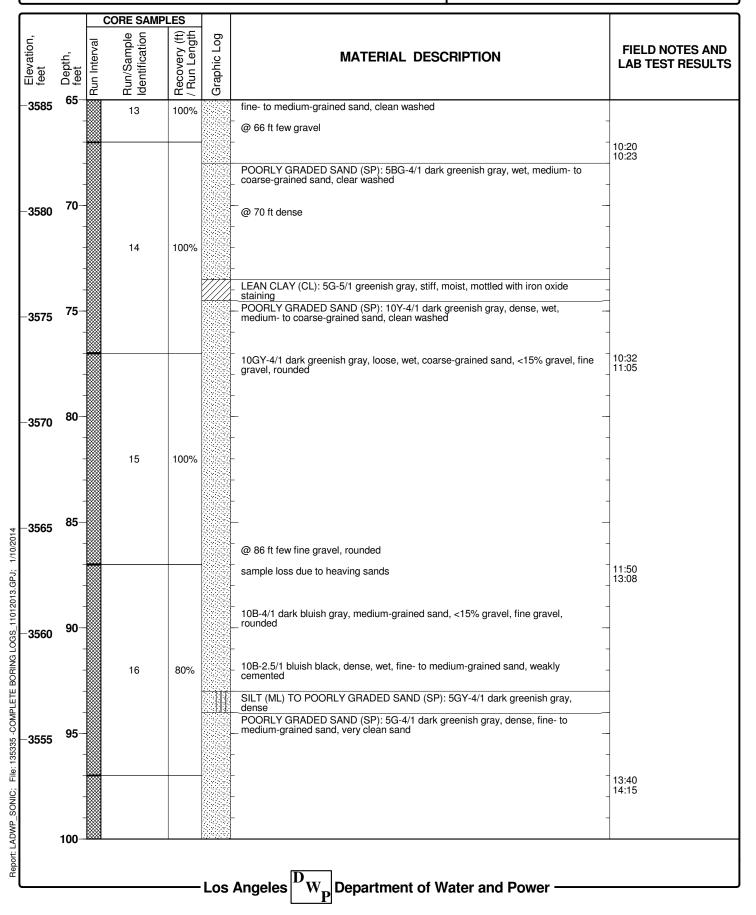


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-923

Sheet 2 of 4

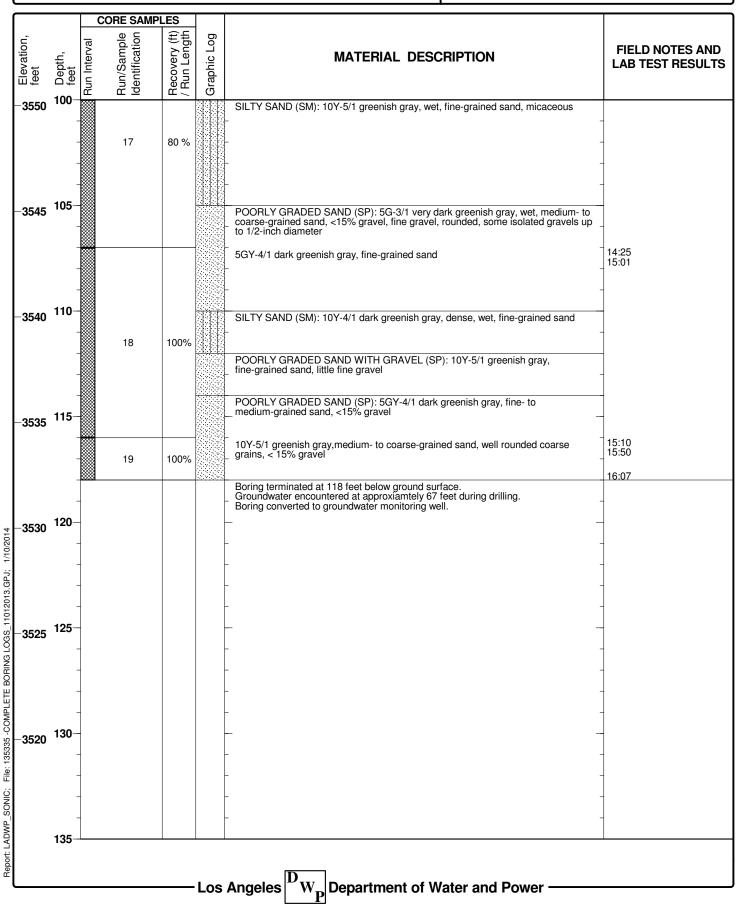


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-923

Sheet 3 of 4

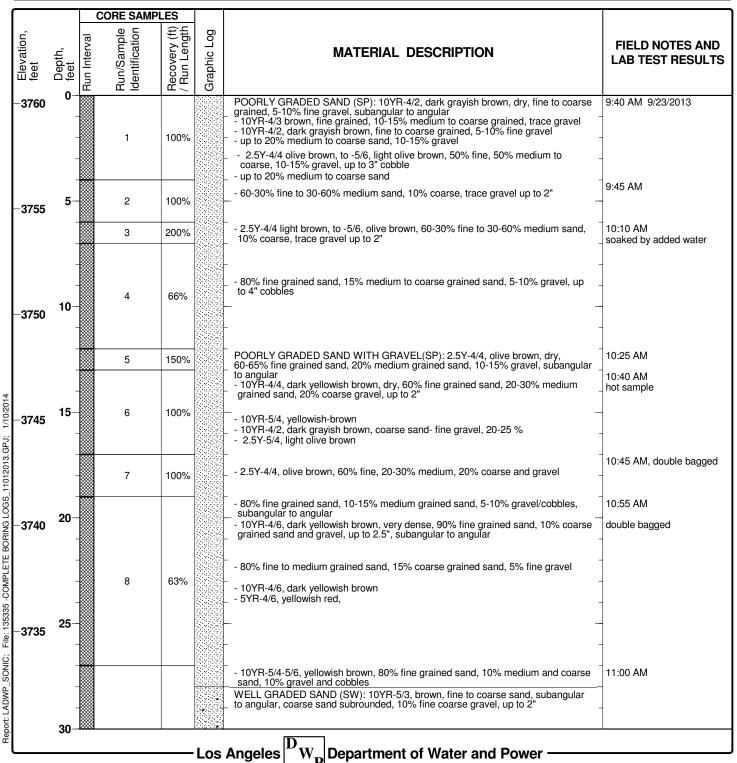


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-923

Sheet 4 of 4

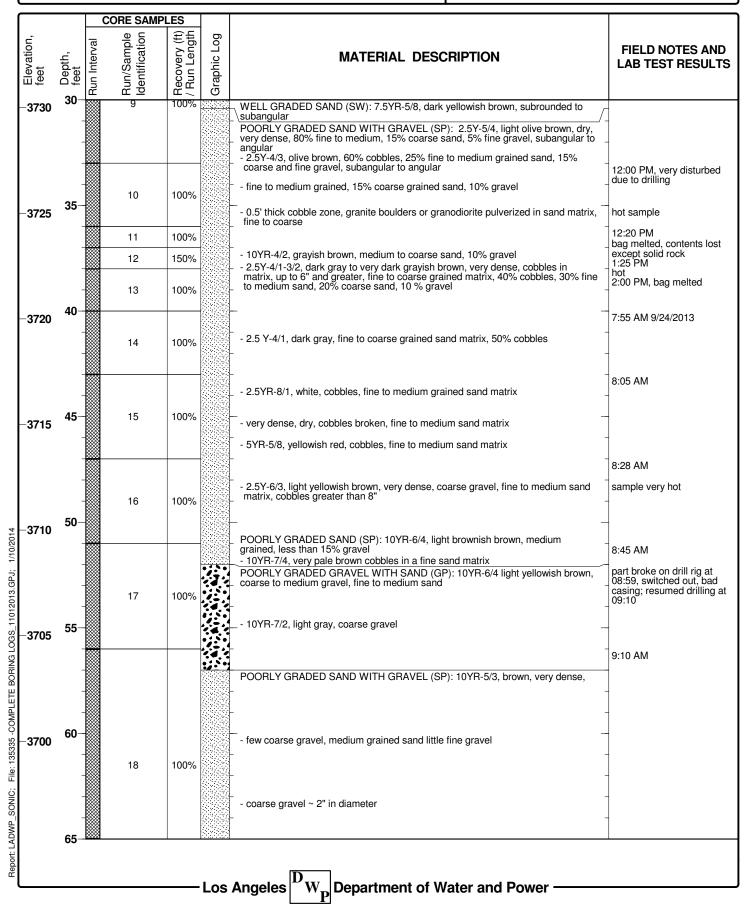

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 1 of 6

Date(s) Drilled	9/23/13 - 9/26/13	Logged By [Reg. No.] Michael Cook [CEG #1716]	Checked By Darrin Hasham [CEG [Reg. No.] #2423]
Drilling Method	Sonic	Drill Bit Size/Type 7-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 188.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3760.4 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 137 ft	Borehole Completed as monitoring well	Borehole Location T-924/MW-9

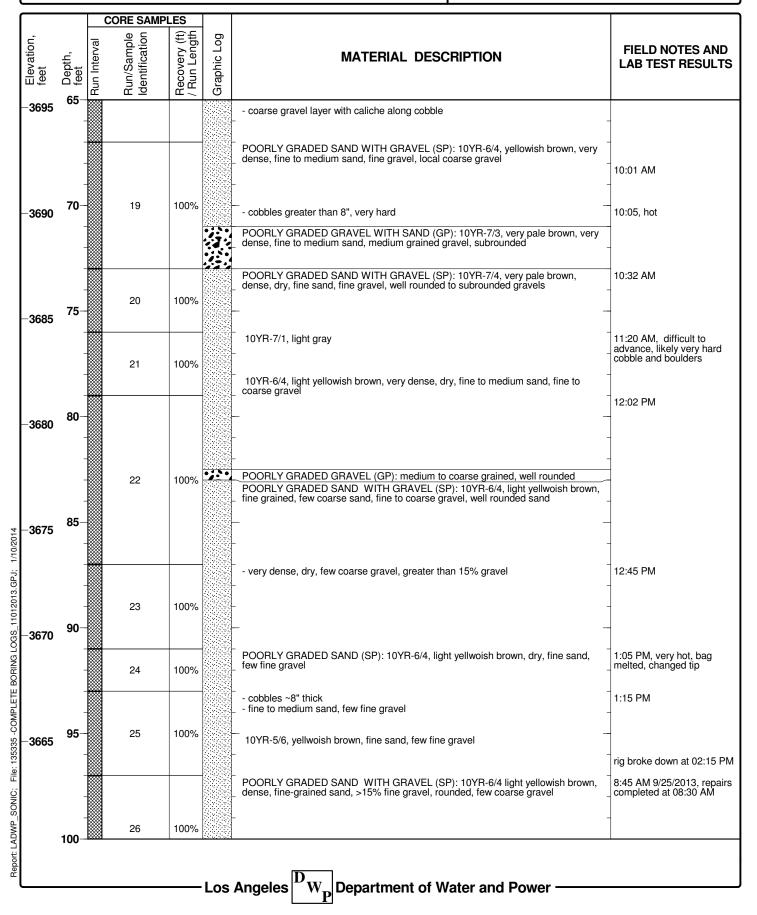


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 2 of 6

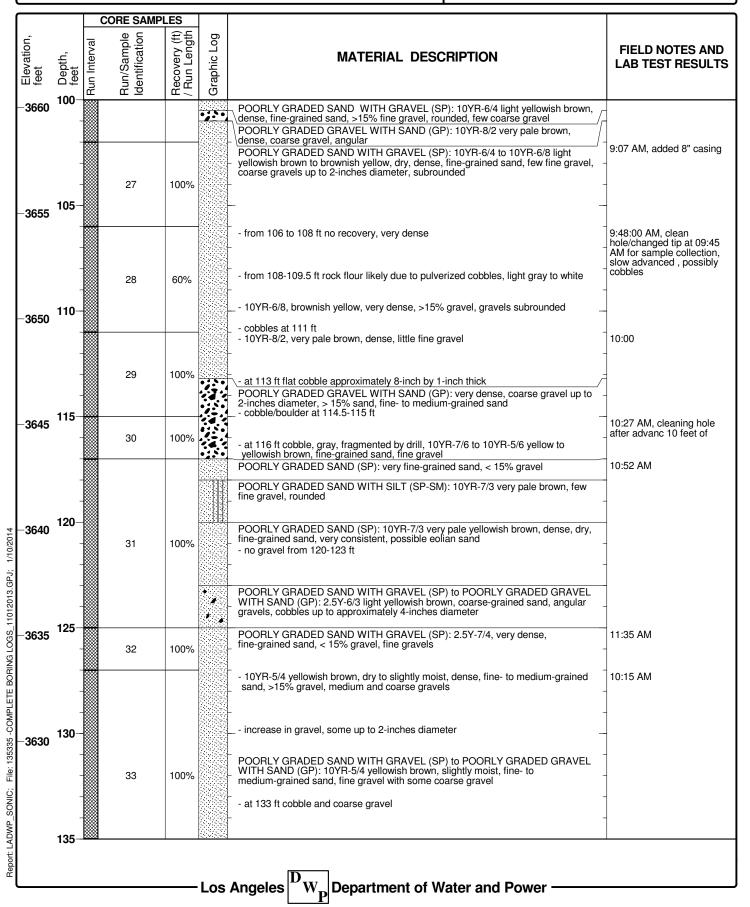


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 3 of 6

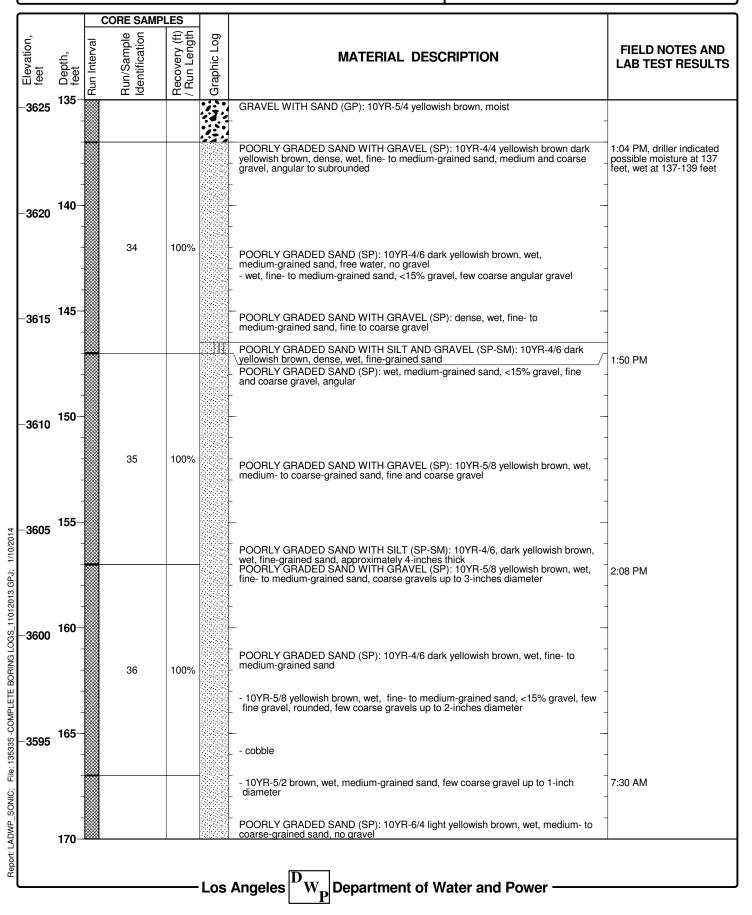


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 4 of 6

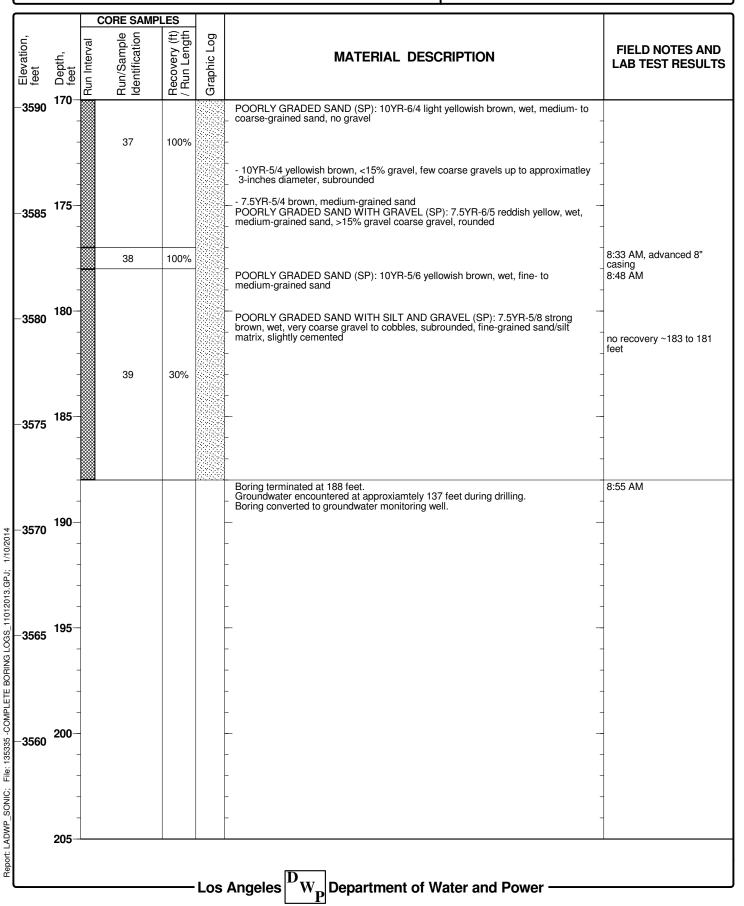


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 5 of 6

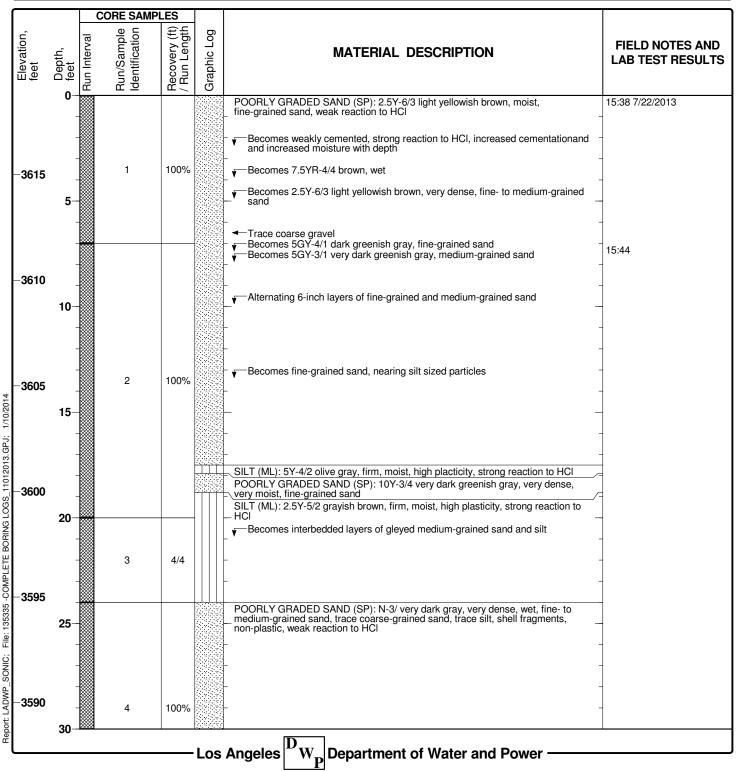


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-924

Sheet 6 of 6

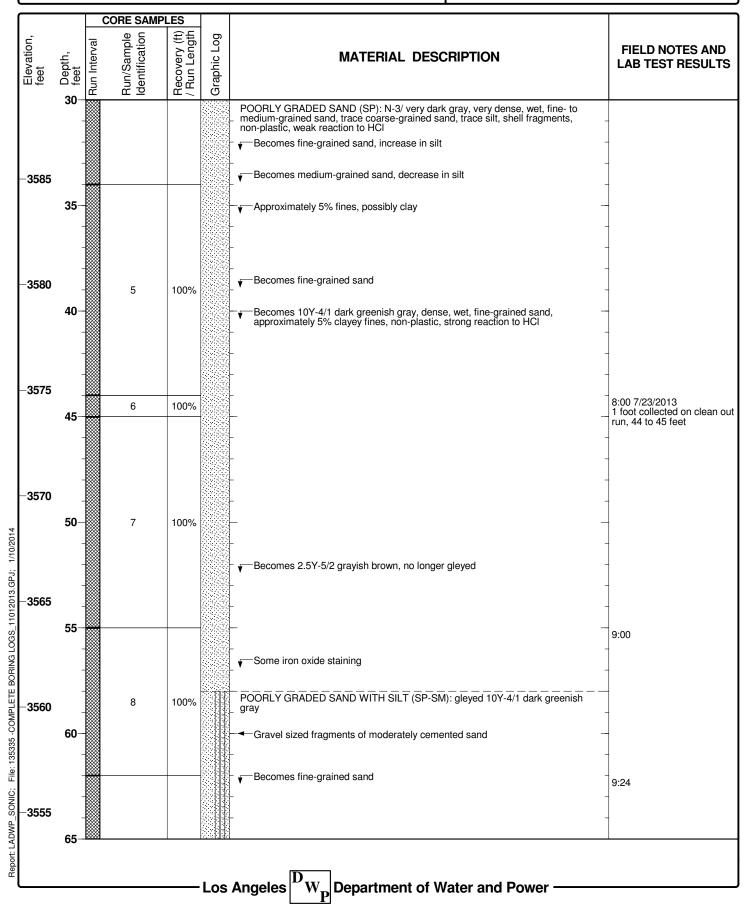

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-925

Sheet 1 of 4

Date(s) Drilled	7/22/13 - 7/23/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 7-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 132.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3618.8 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er Artesian	Borehole Completed as monitoring well	Borehole Location T-925/MW-10

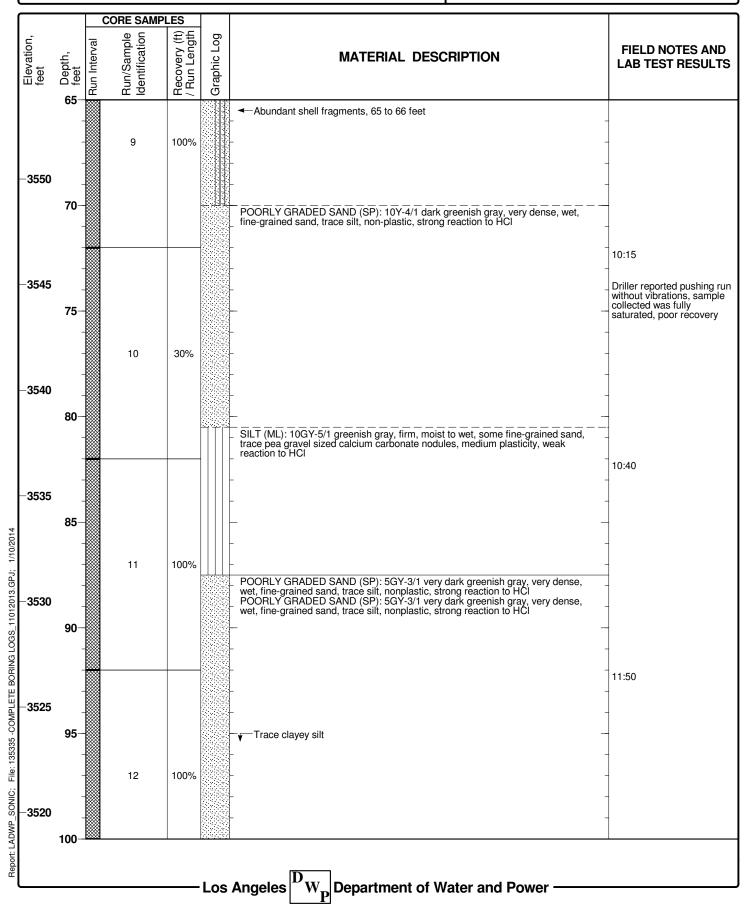


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-925

Sheet 2 of 4

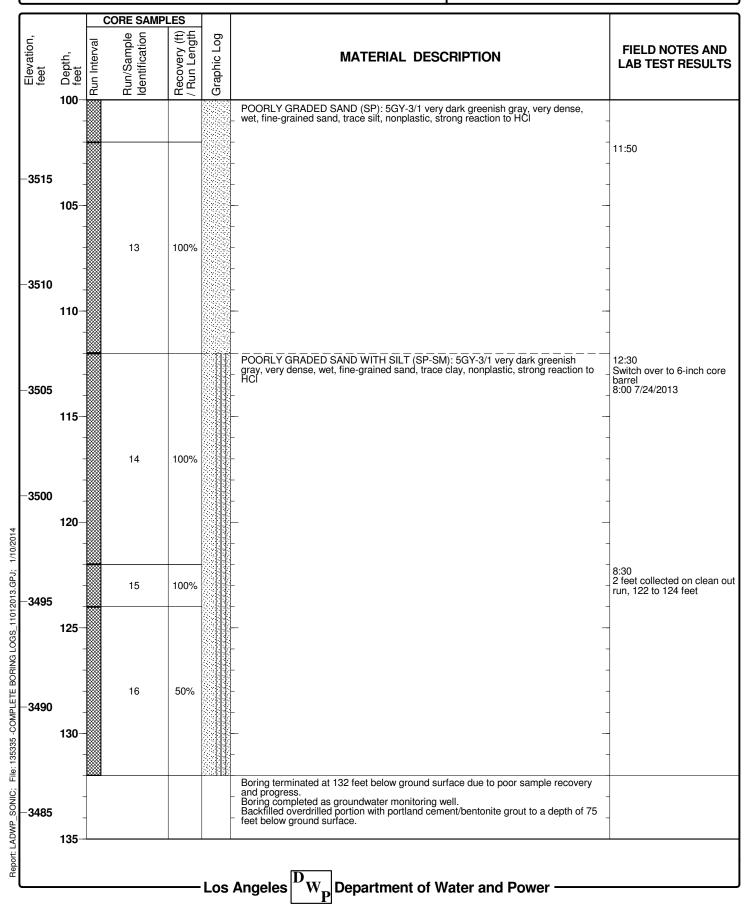


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-925

Sheet 3 of 4

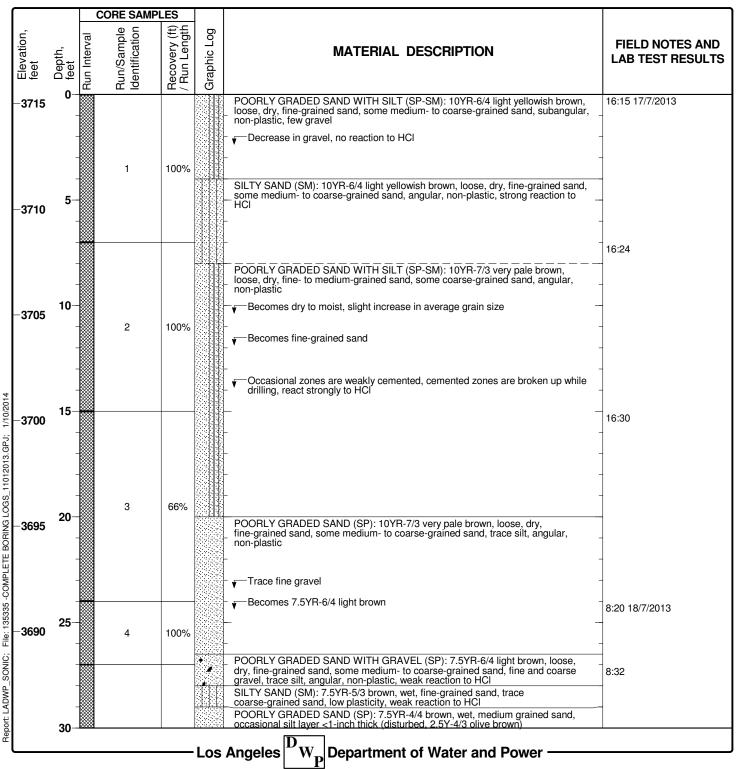


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-925

Sheet 4 of 4

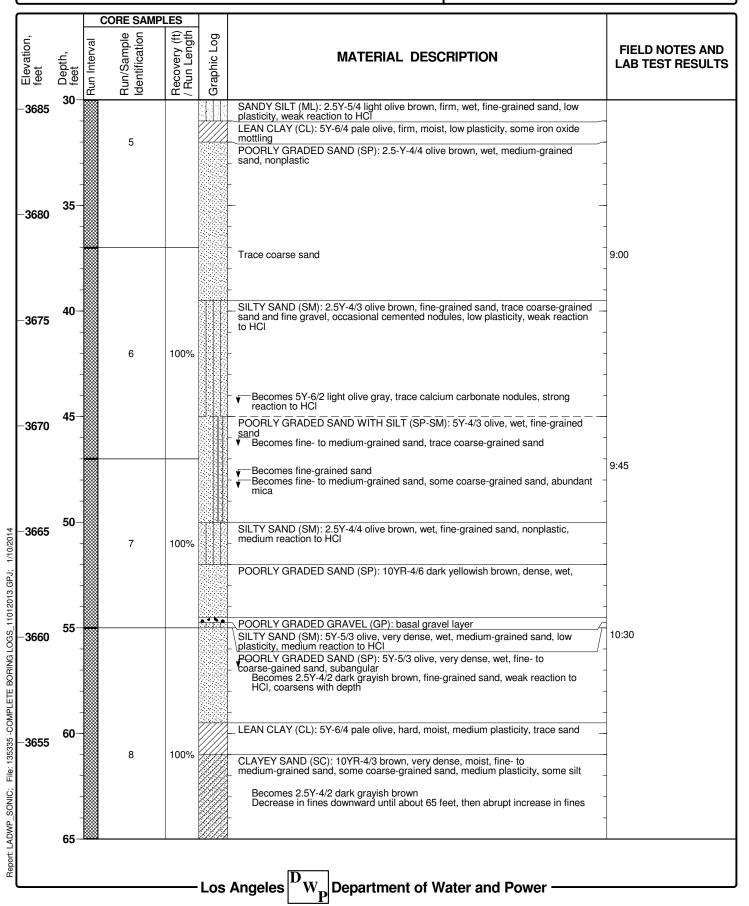

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 1 of 6

Date(s) Drilled	7/17/13 - 7/21/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 172.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3715.4 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	r 28.5 ft	Borehole Completed as monitoring well	Borehole Location T-926/MW-11

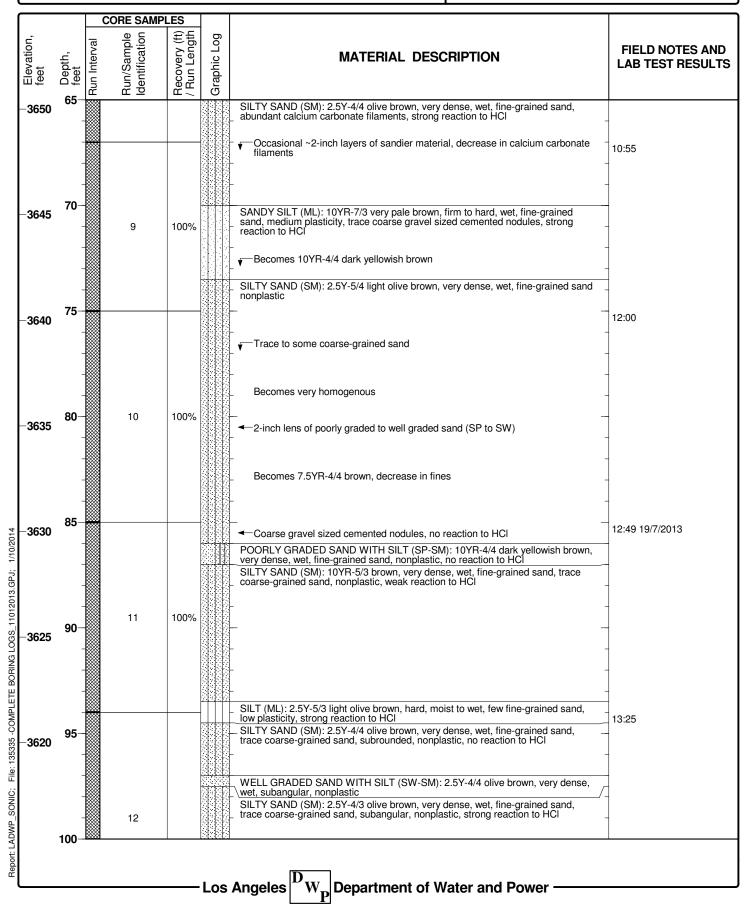


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 2 of 6

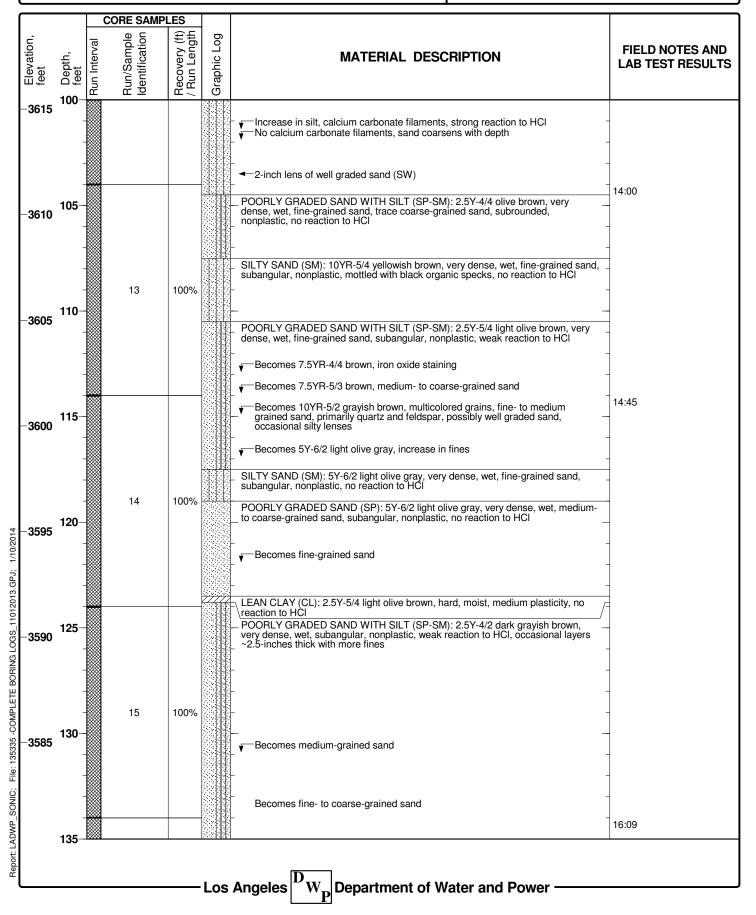


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 3 of 6

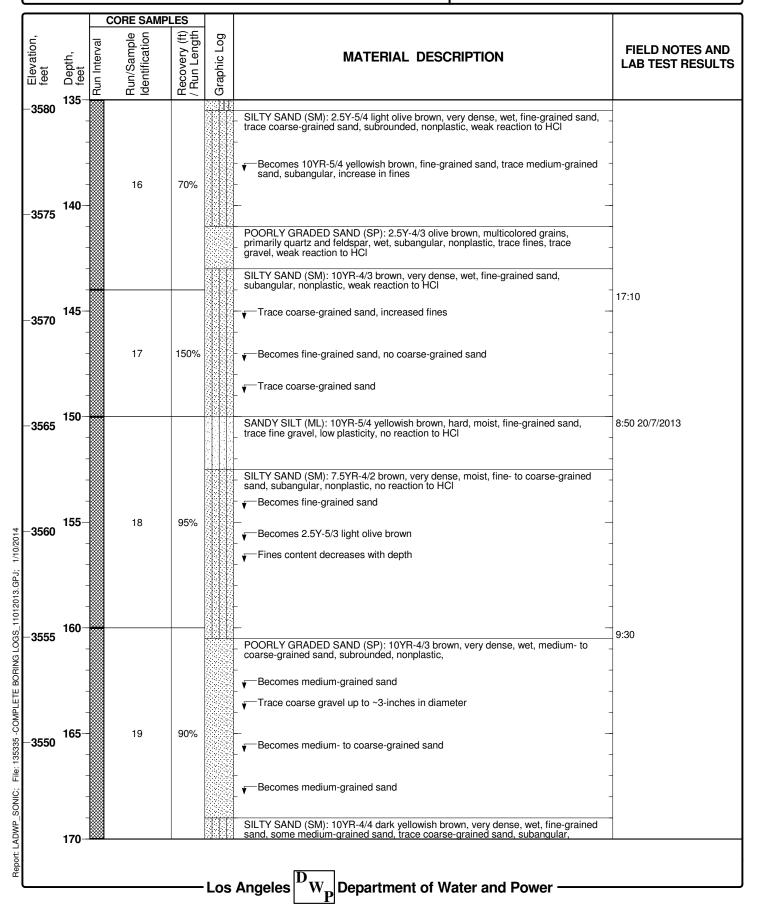


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 4 of 6

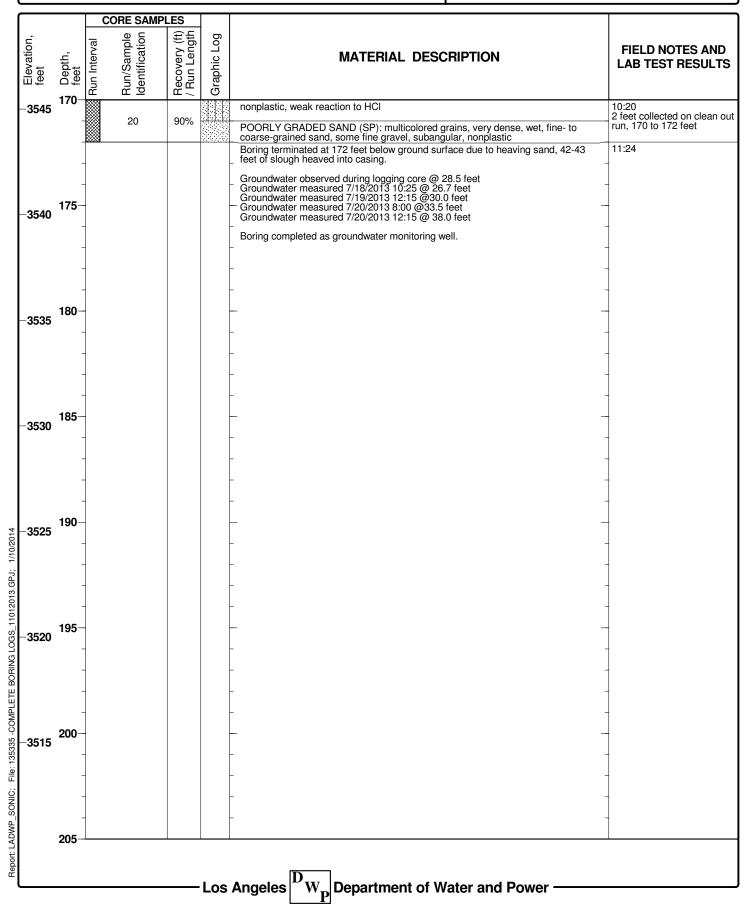


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 5 of 6

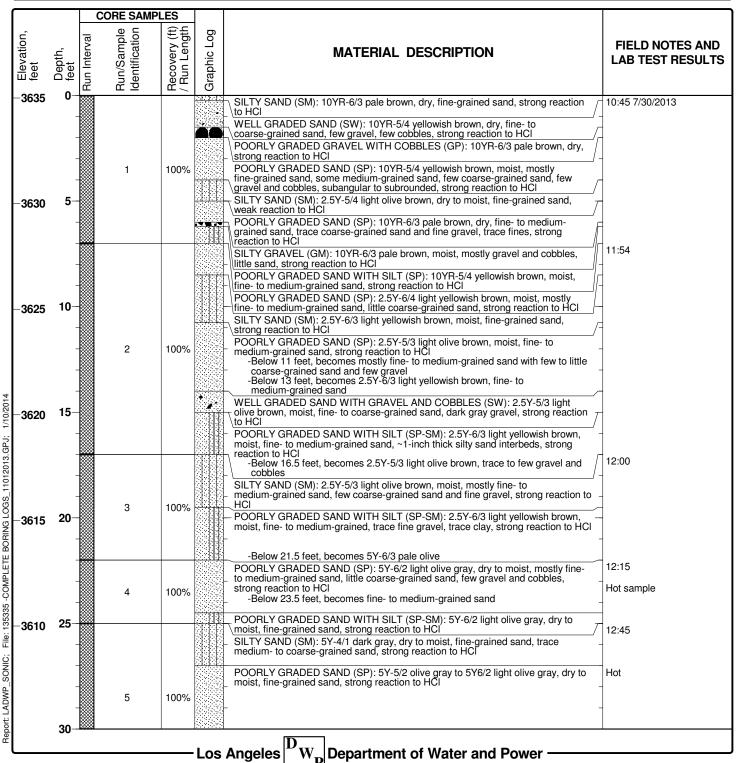


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-926

Sheet 6 of 6

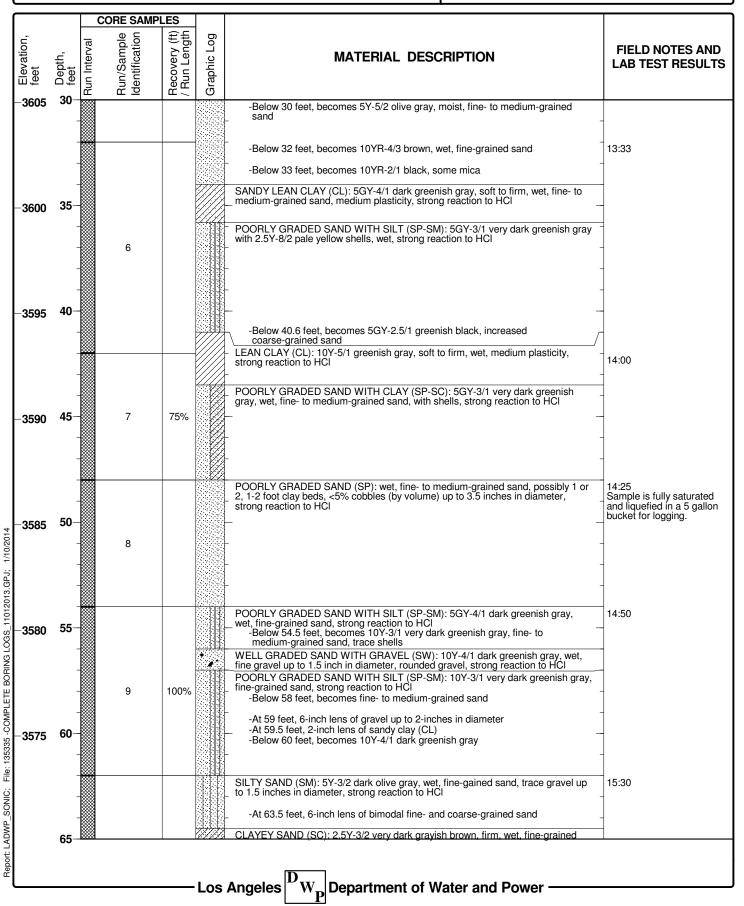

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-927

Sheet 1 of 5

Date(s) Drilled	7/30/13 - 7/31/13	Logged By [Reg. No.] Michelle Garde [CEG #2604]	Checked By Darrin Hasham [CEG #2423]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 154.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3635.1 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	or 30.75 ft	Borehole Completed as monitoring well	Borehole Location T-927/MW-12

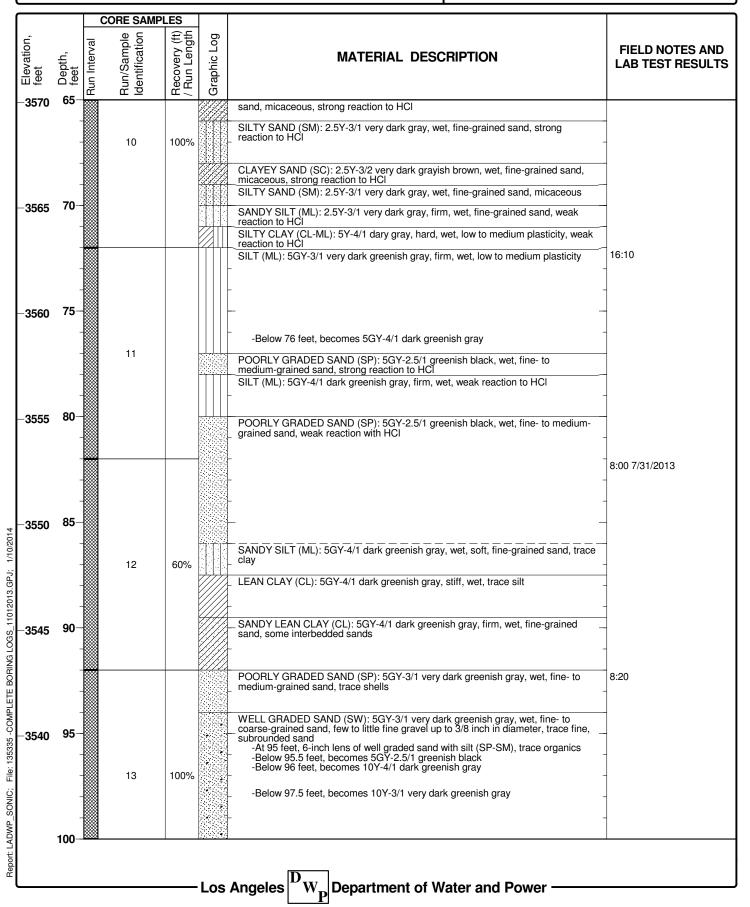


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-927

Sheet 2 of 5

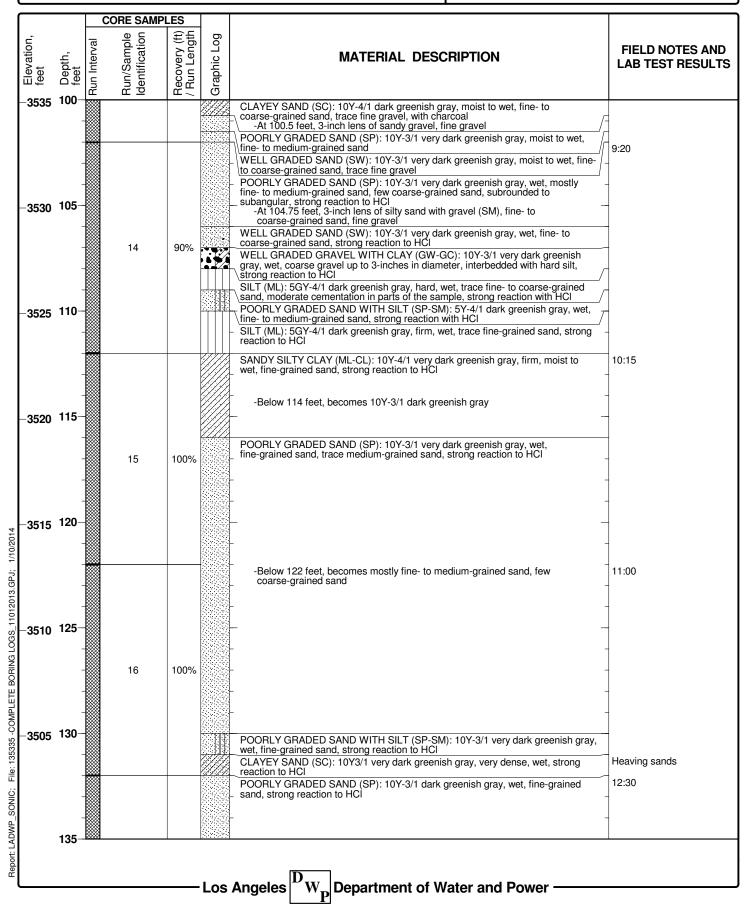


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-927

Sheet 3 of 5

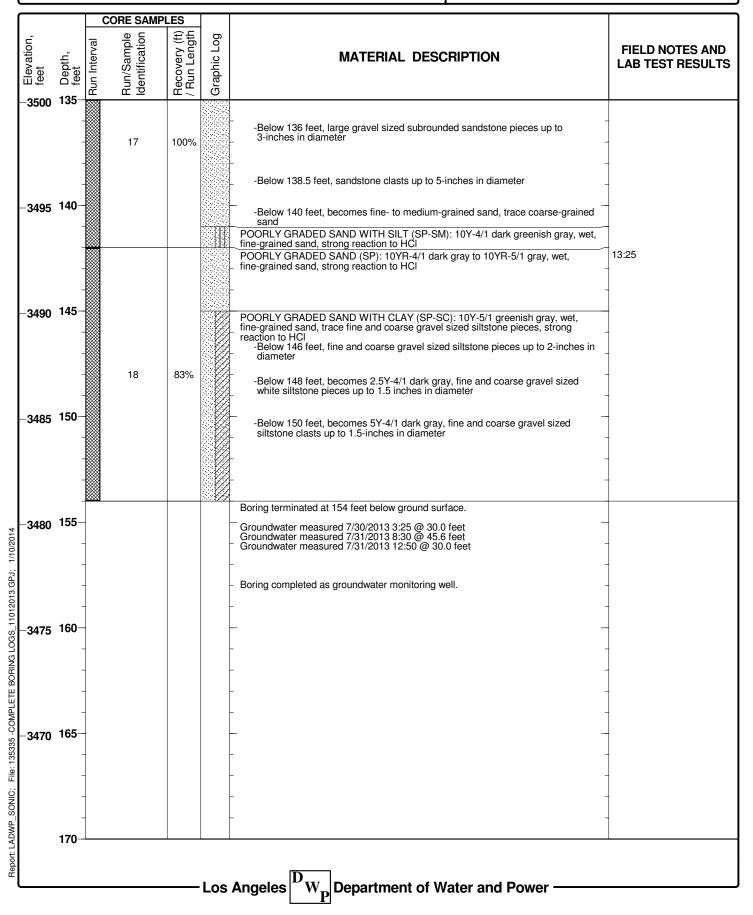


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-927

Sheet 4 of 5

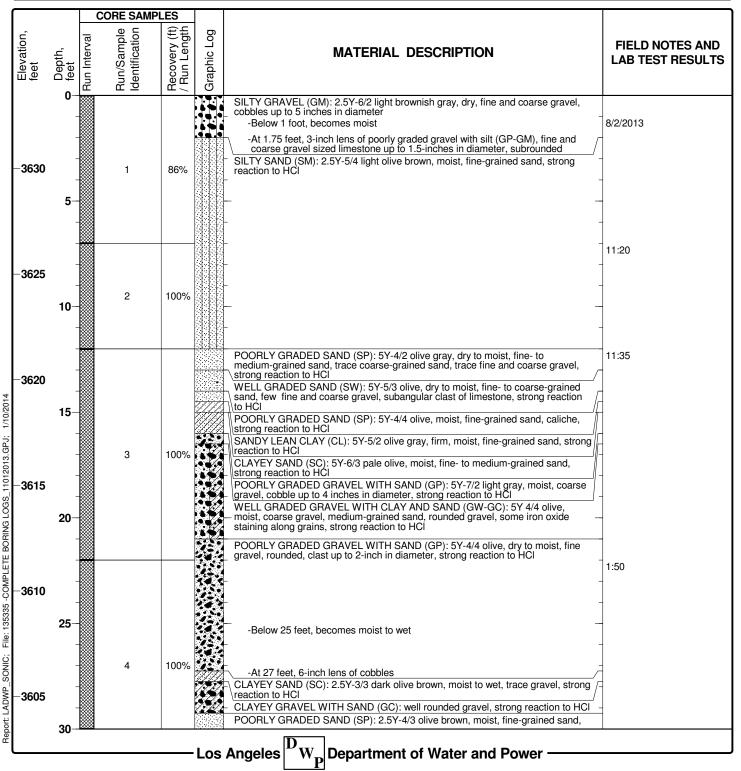


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-927

Sheet 5 of 5

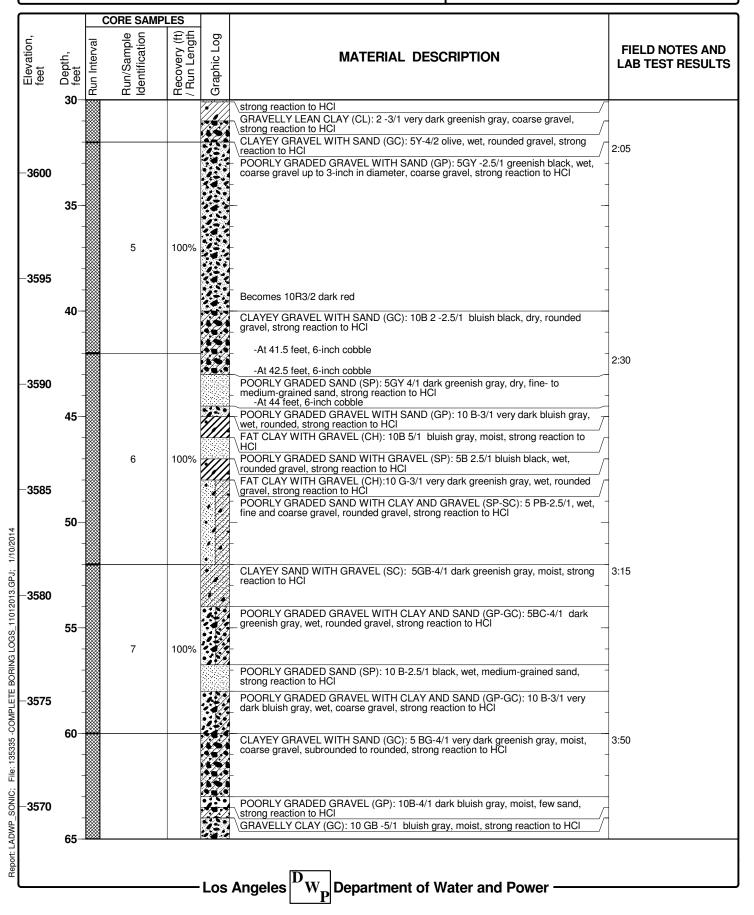

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 1 of 6

Date(s) Drilled	8/2/13 - 8/3/13	Logged By [Reg. No.] Michelle Garde / Michael Cook	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 9-inch to 19 feet, 8-inch to 100 feet, 7-inch to 196 feet	Total Depth of Borehole 196.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3633.5 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	er 28.25 ft	Borehole Completed as monitoring well	Borehole Location T-928/MW-13

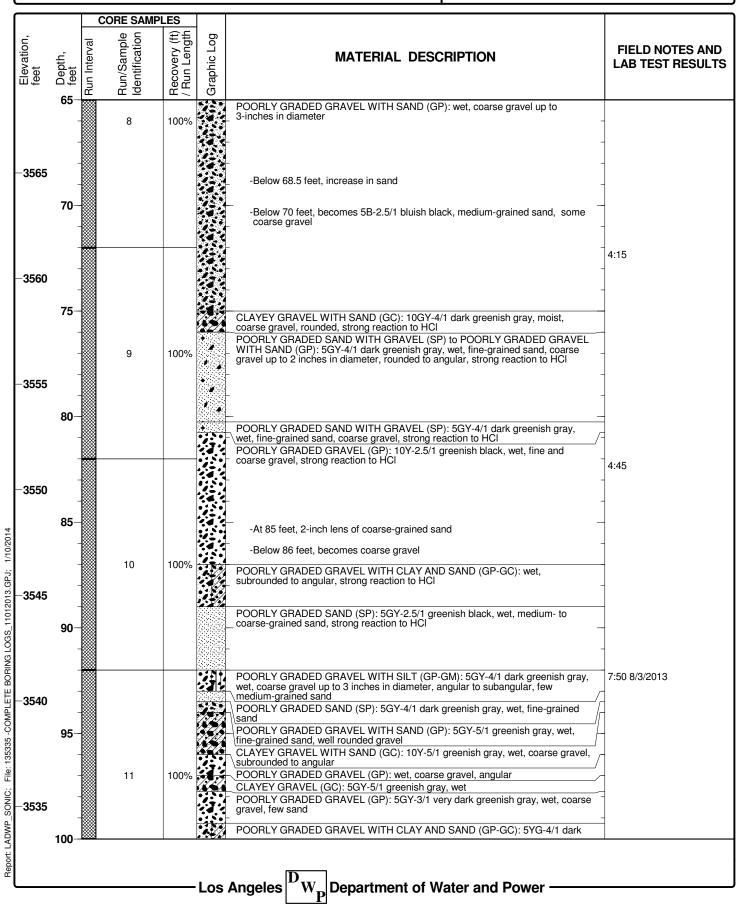


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 2 of 6

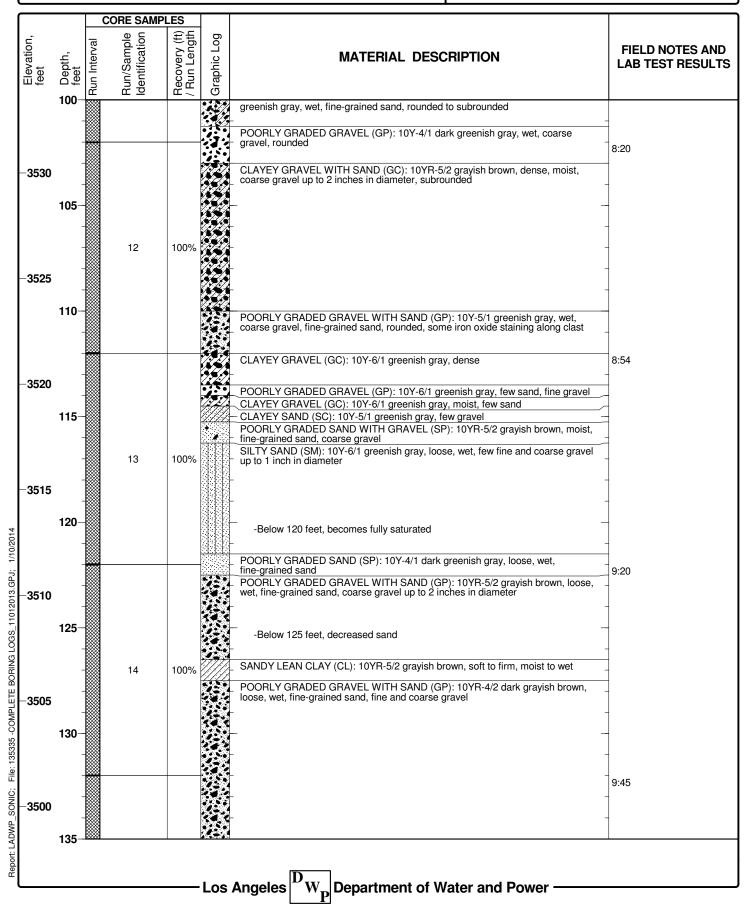


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 3 of 6

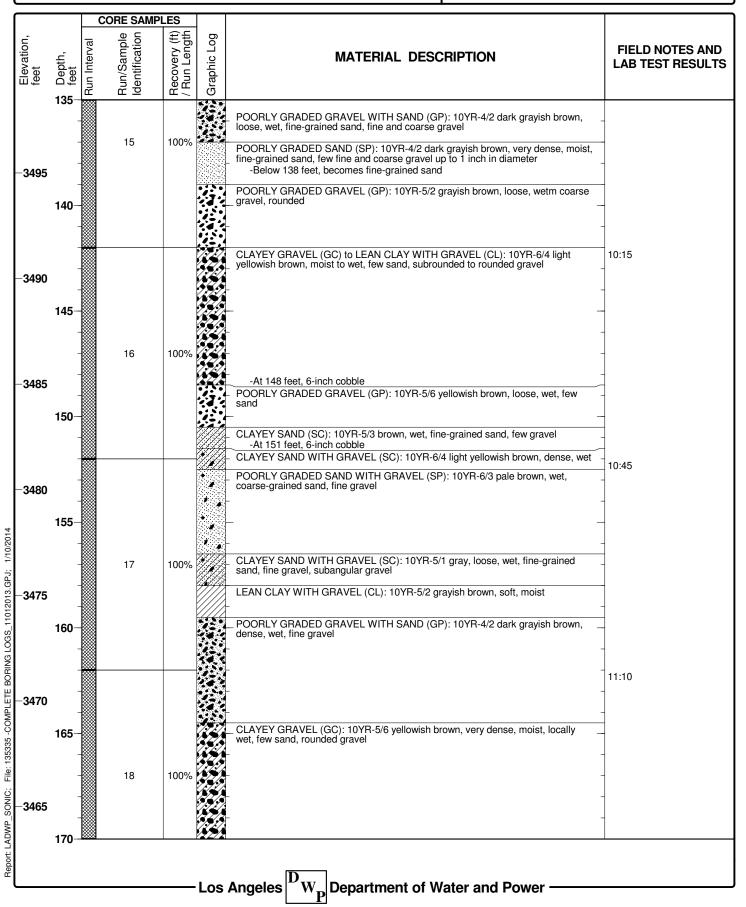


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 4 of 6

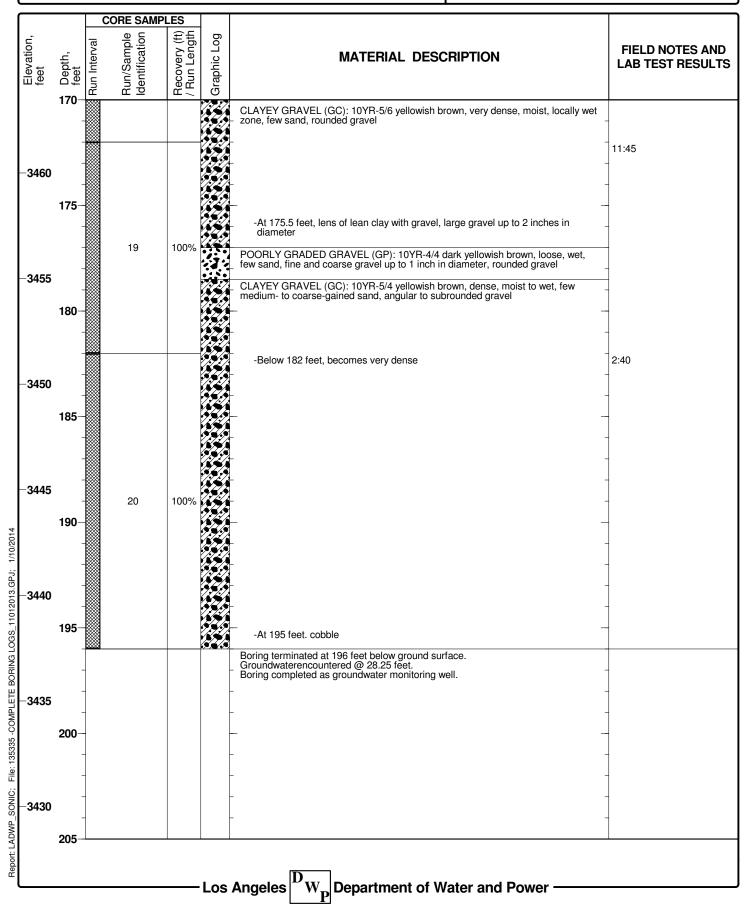


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 5 of 6

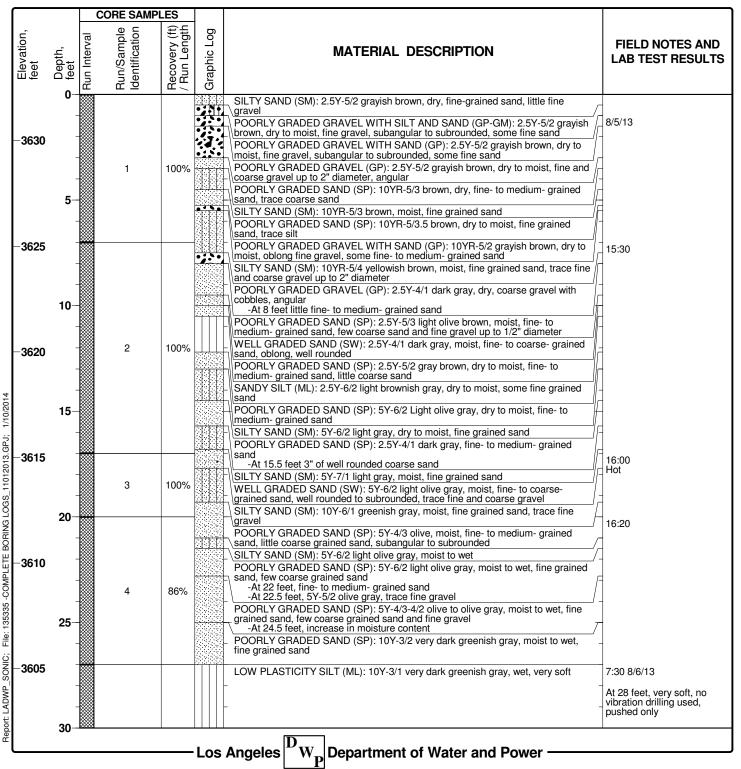


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-928

Sheet 6 of 6

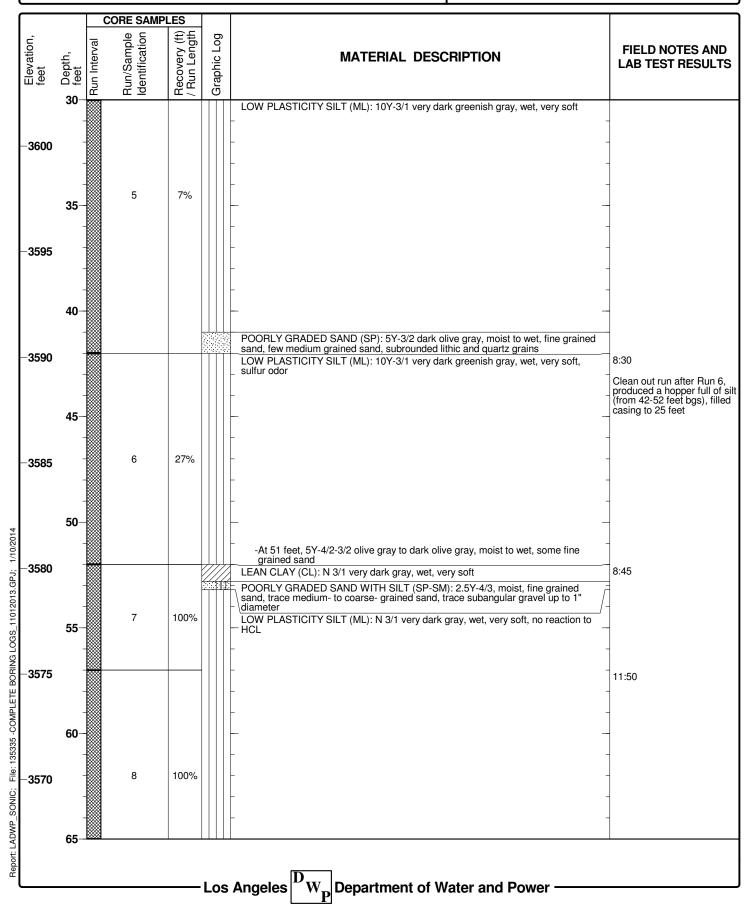

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 1 of 6

Date(s) Drilled	8/5/13 - 8/8/13	Logged By [Reg. No.] Michelle Garde [CEG #2604]	Checked By [Reg. No.]	Darrin Hasham [CEG #2423]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole	200.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation	3632.2 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core		
Groundwate Level (s)	r 8.1 ft	Borehole Completed as monitoring well	Borehole Location T-929/	/MW-14

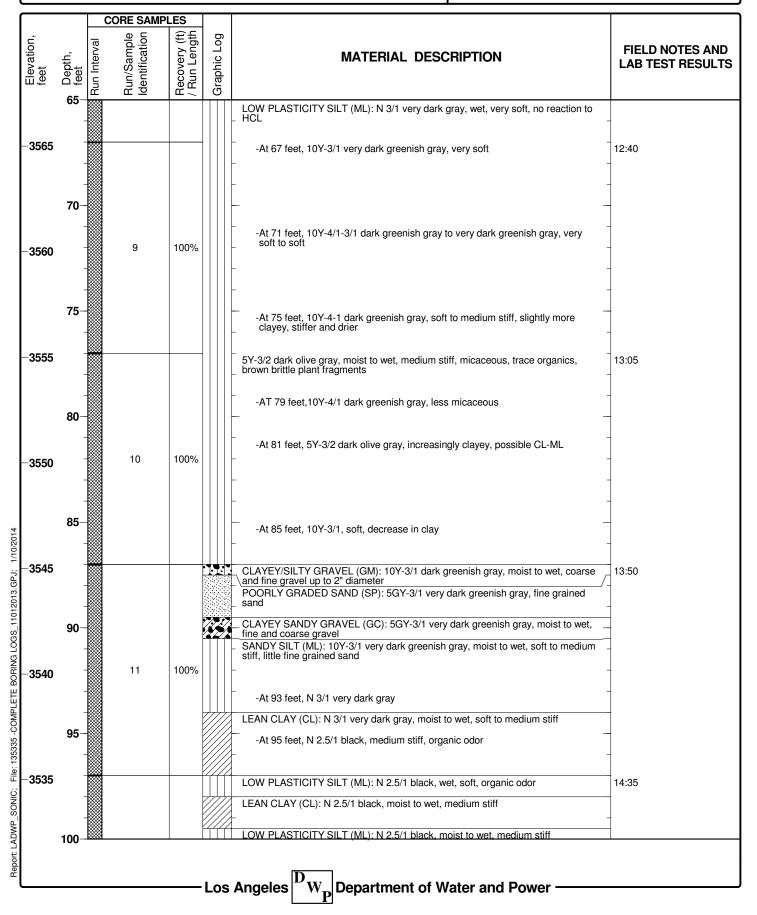


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 2 of 6

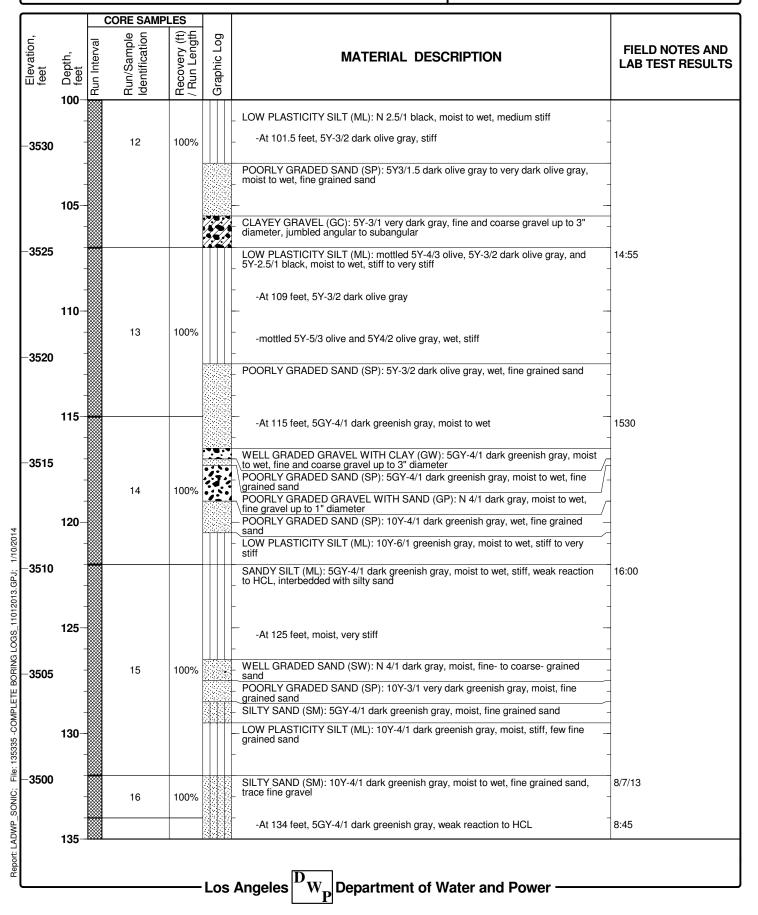


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 3 of 6

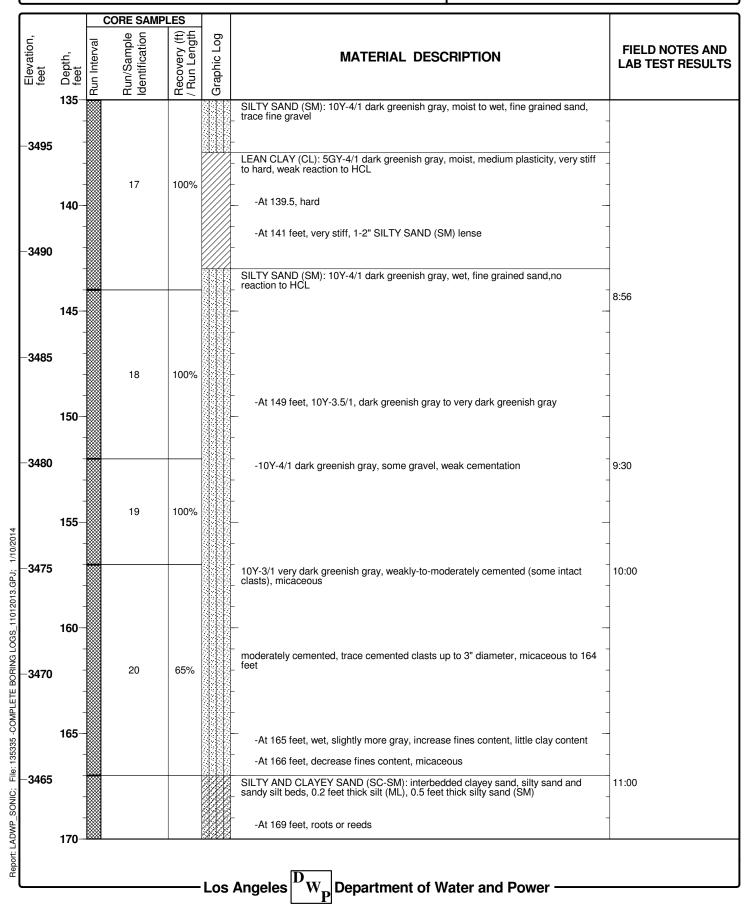


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 4 of 6

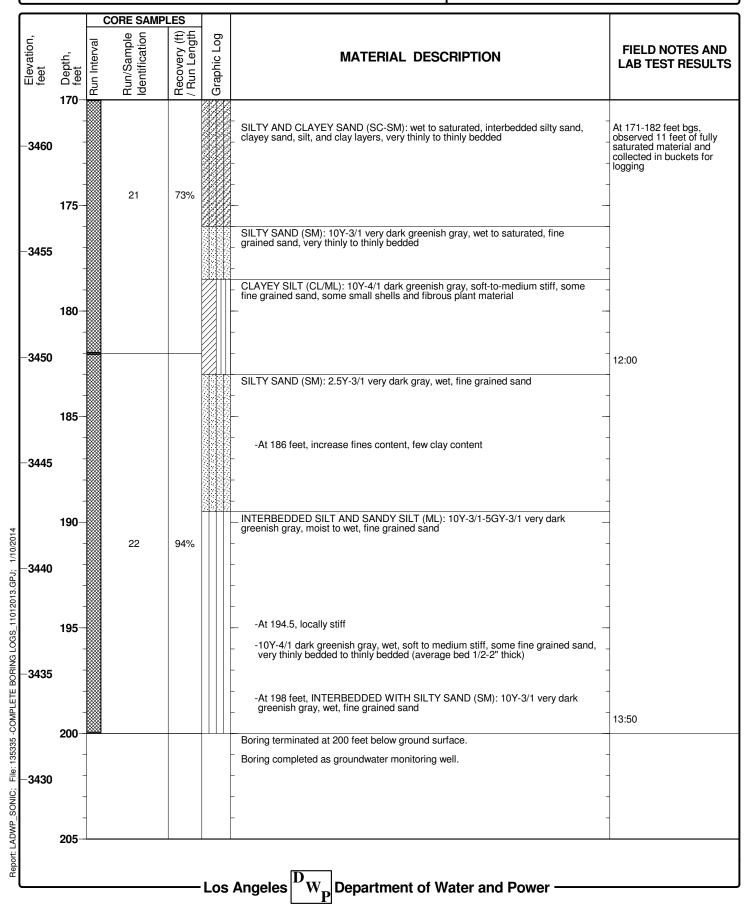


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 5 of 6

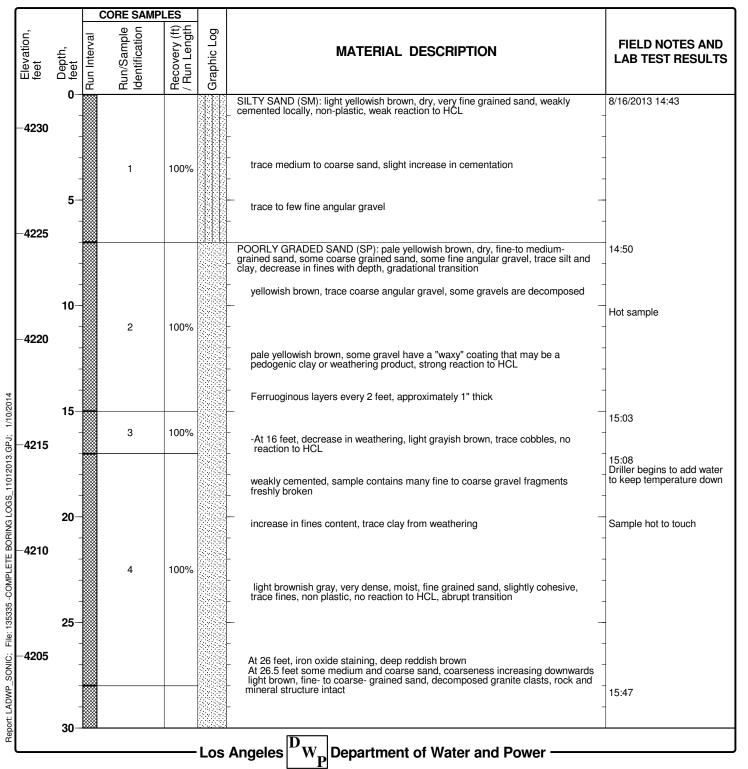


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-929

Sheet 6 of 6

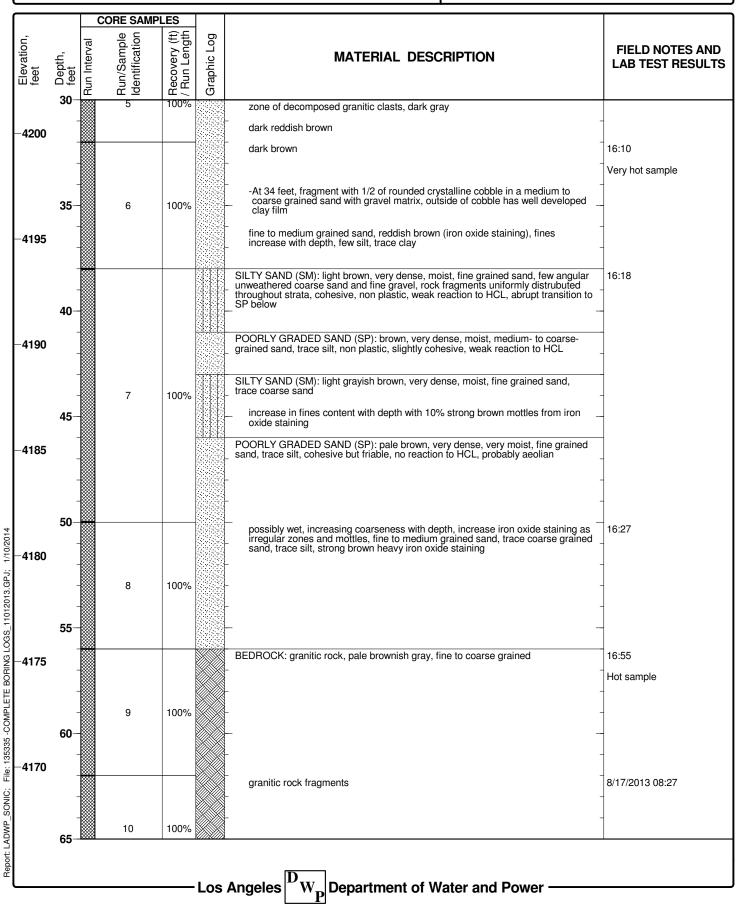

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-930

Sheet 1 of 3

Date(s) Drilled	8/16/13 - 8/17/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel, 8-inch Casing	Total Depth of Borehole 75.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 4231.6 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	r 38.2 ft	Borehole Completed as monitoring well	Borehole Location T-930/MW-1

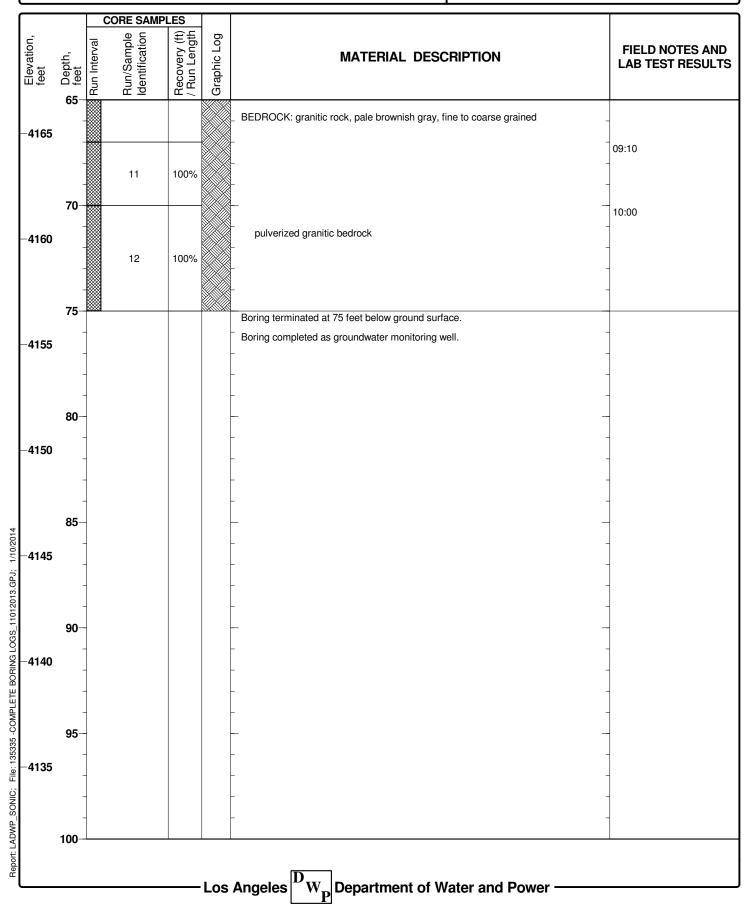


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-930

Sheet 2 of 3

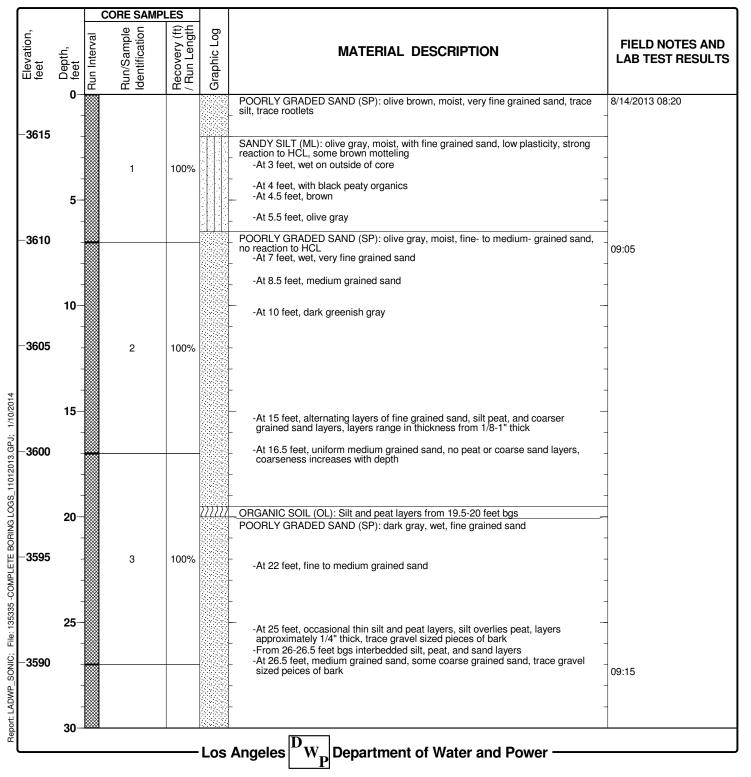


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-930

Sheet 3 of 3

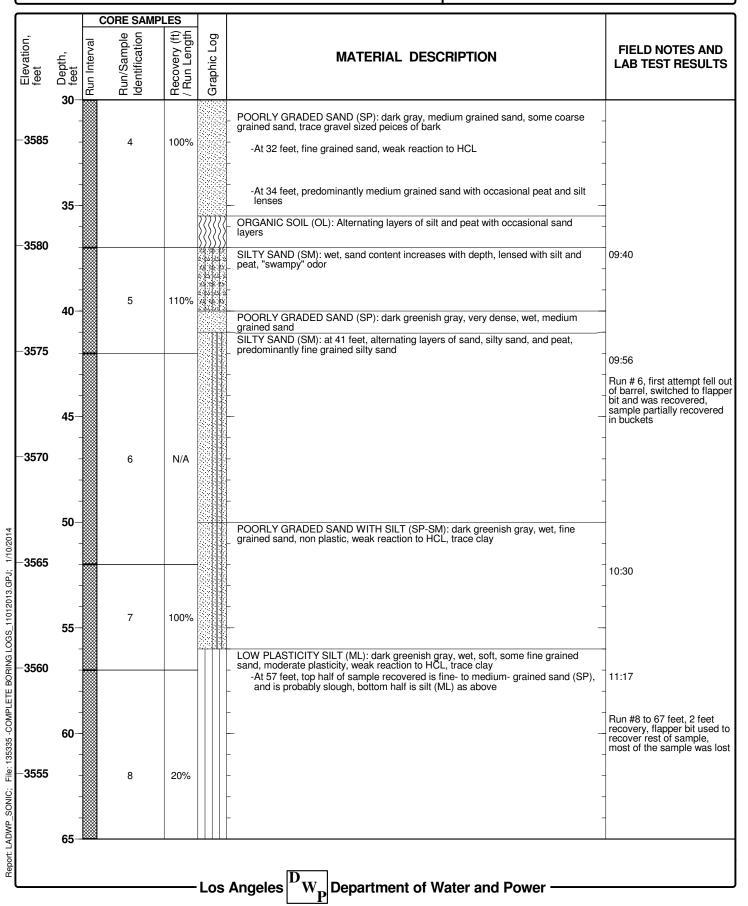

Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-931

Sheet 1 of 4

Date(s) Drilled	8/14/13 - 8/14/13	Logged By [Reg. No.] Darrin Hasham [CEG #2423]	Checked By [Reg. No.]
Drilling Method	Sonic	Drill Bit Size/Type 6-inch Core Barrel	Total Depth of Borehole 127.0 feet
Drill Rig Type	Prosonic 600 C	Drilling Contractor Cascade Drilling	Ground Surface Elevation 3616.9 feet NAVD88
Hammer Data [ERi]	NA	Sampling Methods and Drill Rod Use Continuous Soil Core	
Groundwate Level (s)	of 14.02 ft	Borehole Completed as monitoring well	Borehole Location T-931/MW-2

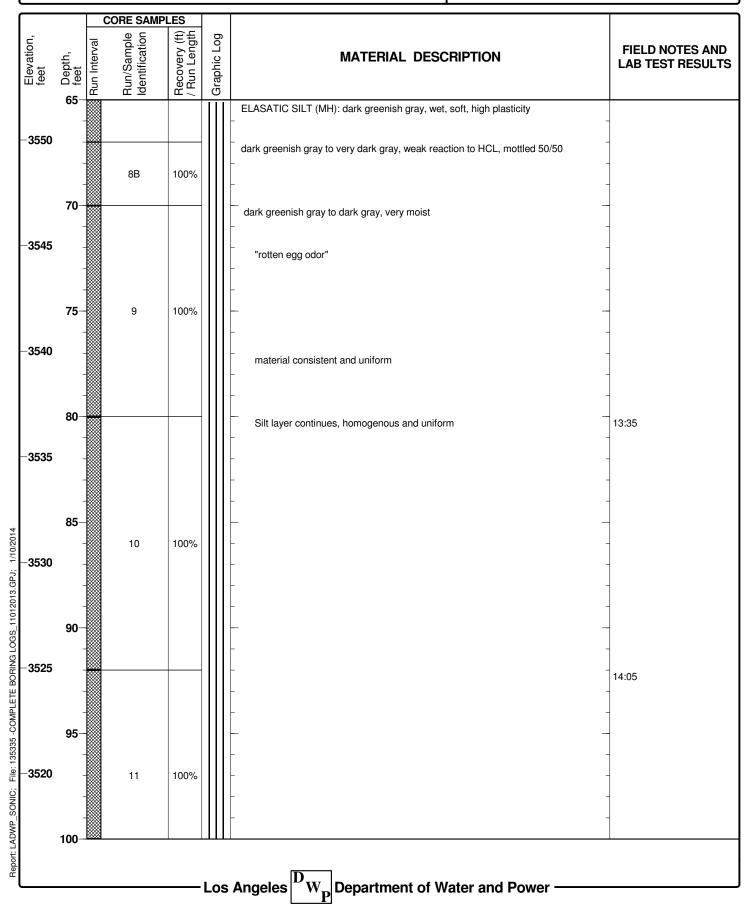


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-931

Sheet 2 of 4

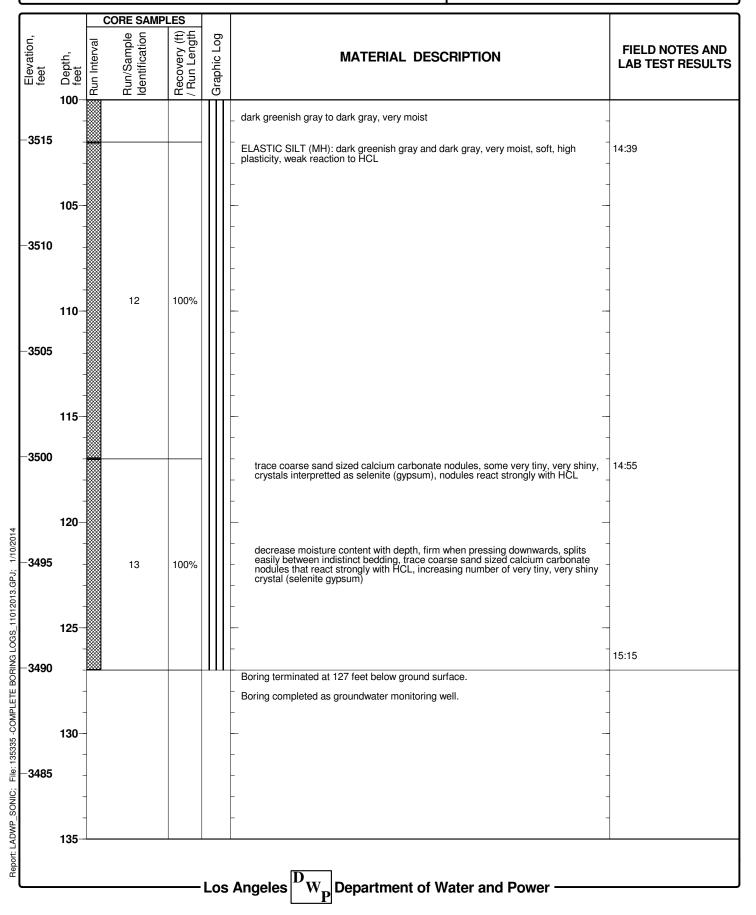


Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-931

Sheet 3 of 4



Project Location: 3001 Rt. 190 Olancha, CA

Consultant: Kleinfelder Consultant Project No.: 135335

Log of Borehole T-931

Sheet 4 of 4

APPENDIX B Soil Core Photographs

(PROVIDED ON CD)

APPENDIX C Soil Analytical Results

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: August 2, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(949)727-4466 Email:ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program / 135335

Lab I.D.: 130726-6, -7

Dear Mr. Philips:

The **analytical results** for the soil samples, received by our laboratory on July 26, 2013, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

DATE RECEIVED: 07/26/13

MATRIX: SOIL

DATE EXTRACTED: 07/30/13 DATE ANALYZED: 07/30/13

DATE SAMPLED: <u>07/25/13</u>

DATE REPORTED: 08/02/13

REPORT TO: Mr. ERIC PHILIPS

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T-925	130726-6	ND	ND	ND	1
T-926	130726-7	ND	ND	ND	1
METHOD BLANK		ЙD	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: ______

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

7/30/2013

Units:

mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 130726-06

Spiked Sample Lab I.D.: 130729-30 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	211	106%	212	106%	0%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	205	103%	75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130726-06	130726-07					
O-Terphenyl	60-140%	100%	121%	122%					
Octacosane	60-140%	100%	121%	120%				3	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analyzed and Reviewed By:	

Final Reviewer:

* = Surrogate fail due to matrix interference

Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

DATE RECEIVED: 07/26/13 MATRIX: SOIL DATE ANALYZED: 07/29&30/13 DATE SAMPLED: 07/25/13 REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/02/13

SAMPLE I.D.: **T-925** LAB I.D.: 130726-6

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	12.8	0.3	1	500	5.0	6010B
Barium(Ba)	41.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	6.70	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	_	500	5.0	7196A
Cobalt(Co)	2.57	1.0	_1	8,000	80	6010B
Copper(Cu)	3.63	1.0	1	2,500	25	6010B
Lead(Pb)	2.03	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.62	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	28.8	5.0	1	2,400	24	6010B
Zinc(Zn)	11.3	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED:07/26/13 DATE SAMPLED: 07/25/13 DATE ANALYZED: 07/29&30/13 REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/02/13

SAMPLE I.D.: T-926 LAB I.D.: 130726-7

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	0.776	0.3	1	500	5.0	6010B
Barium(Ba)	42.6	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1,	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	21.5	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	20	0.2	1	500	5.0	7196A
Cobalt(Co)	5.90	1.0	1	8,000	80	6010B
Copper(Cu)	12.3	1.0	1	2,500	25	6010B
Lead(Pb)	3.58	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	2.62	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	59.0	5.0	1	2,400	24	6010B
Zinc(Zn)	39.3	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel (949) 727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 07/26/13
DATE SAMPLED: 07/25/13
REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/02/13

METHOD BLANK FOR LAB I.D.: 130726-6, -7

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1.	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by: _______CAL-DHS ELAP CERTIFICATE No.: 1555

04/0C for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 7/29/2013	7/29/2013							Unit	Unit: mg/Kg(ppm)	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec	% RPD
Arsenic(As)	130726-17	50.0	100	PASS	2.60	50.0	53.2	101%	51.8	98%	3%
Chromium(Cr)	130726-17	50.0	96	PASS	24.5	50.0	70.5	92%	71.3	94%	2%
Lead(Pb)	130726-17	50.0	100	PASS	2.85	50.0	52.1	%66	52.3	99%	0%
ANAL	ANALYSIS DATE. : 7/30/2013	7/30/2013									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	WIS	% Rec MS	MSD	% Rec MSD	% RPD

4%

%98

0.108

83% SIN

0.104

Conc. 0.125

%Rec.

PASS

94

0.125

130729-30

Mercury (Hg)

MS/MSD Status

%RPD $0 \sim 20$ PASS PASS PASS PASS 85 - 115%CCS PASS PASS PASS PASS 75~125 %MSD PASS PASS PASS PASS $75 \sim 125$ PASS PASS PASS %MS PASS Accepted Range Chromium(Cr) Mercury (Hg) Arsenic(As) Analysis Lead(Pb)

Batch For Samples:130726-6,7

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 07/26/13
DATE SAMPLED: 07/25/13
REPORT TO: Mr. ERIC PHILIPS
DATE REPORTED: 08/02/13

SAMPLE I.D.: **T-925** LAB I.D.: 130726-6

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 07/26/13
DATE SAMPLED: 07/25/13
REPORT TO: Mr. ERIC PHILIPS
DATE REPORTED: 08/02/13

SAMPLE I.D.: **T-925** LAB I.D.: 130726-6

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 07/26/13 DATE ANALYZED: 07/30/13 DATE SAMPLED: <u>07/25/13</u> DATE REPORTED: 08/02/13 REPORT TO: Mr. ERIC PHILIPS

LAB I.D.: 130726-7 SAMPLE I.D.: **T-926** ______

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE,	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	<u>ND</u>	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 07/26/13

DATE SAMPLED: 07/25/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/02/13

SAMPLE I.D.: **T-926** LAB I.D.: 130726-7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 07/26/13
DATE SAMPLED: 07/25/13
REPORT TO: Mr. ERIC PHILIPS
DATE REPORTED: 08/02/13

METHOD BLANK FOR LAB I.D.: 130726-6, -7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE RESULT	PQL X1
ND	0.020
ND	0.005
ND	0.020
ND	0.005
ND	0.005
ND	0.005
ND	0.010
ND	0.005
ND.	0.005
ND	0.005
	ND

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:____

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 07/26/13

DATE SAMPLED: 07/25/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/02/13

METHOD BLANK FOR LAB I.D.: 130726-6, -7

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ŅD	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

7/30/2013

Matrix:

Solid/Soil/Liquid

Machine:

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

BATCH ID: 130730-LCS1/2

Spiked Sample Lab I.D.:		130/30-LCS	112				DATOTIO	. 130730-LO	0 172-
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.055	110%	0.060	120%	9%	75-125	0-20
Chlorobenzene	0	0.050	0.043	86%	0.044	88%	2%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.051	102%	0.055	111%	9%	75-125	0-20
Toluene	0	0.050	0.057	113%	0.057	115%	2%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.054	108%	0.056	112%	4%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.059	119%	75-125
Chlorobenzene	0.050	0.044	88%	75-125
Chloroform	0.050	0.056	112%	75-125
1,1-Dichlorothene	0.050	0.058	116%	75-125
Ethylbenzene	0.050	0.048	96%	75-125
o-Xylene	0.050	0.049	98%	75-125
m,p-Xylene	0.100	0.094	94%	75-125
Toluene	0.050	0.060	120%	75-125
1,1,1-Trichloroethane	0.050	0.054	108%	75-125
Trichloroethene (TCE)	0.050	0.056	113%	75-125

spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
		M-BLK	130726-6	130726-7	130729-21	130729-23	130729-41	130729-24
50.0	70-130	130%	265*%	126%	110%	119%	130%	106%
50.0	70-130	107%	92%	103%	98%	109%	110%	95%
50.0	70-130	102%	72%	100%	89%	100%	101%	63*%
		1			1			
spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
		130729-25	130729-26	130729-27	130729-28	130729-29	130729-30	
50.0	70-130	113%	104%	102%	97%	90%	0*%	
50.0	70-130	100%	99%	97%	99%	98%	108%	
50.0	70-130	77%	73%	73%	73%	67*%	97%	
spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
50.0	70-130							
50.0	70-130							
50.0	70-130							
	50.0 50.0 50.0 50.0 spk conc 50.0 50.0 spk conc	50.0 70-130 50.0 70-130 50.0 70-130 50.0 70-130 spk conc ACP %RC 50.0 70-130 50.0 70-130 spk conc ACP %RC 50.0 70-130 50.0 70-130	M-BLK 50.0 70-130 130% 50.0 70-130 107% 50.0 70-130 102%	M-BLK 130726-6 50.0 70-130 130% 265*% 50.0 70-130 107% 92% 50.0 70-130 102% 72% spk conc ACP %RC %RC %RC 130729-25 130729-26 50.0 70-130 113% 104% 50.0 70-130 100% 99% 73% spk conc ACP %RC %RC %RC 50.0 70-130 70-130 50.0 70-130 50.0 70-130 70-130 70-130 70-130	M-BLK 130726-6 130726-7	M-BLK 130726-6 130726-7 130729-21	M-BLK 130726-6 130726-7 130729-21 130729-23 130729-23 130729-23 130729-23 130729-23 130729-23 130729-23 130729-23 130729-23 130729-23 130729-24 130729-25 130729-26 130729-27 130729-28 130729-29 130729-29 130729-28 130729-29 130729-28 130729-29	M-BLK 130726-6 130726-7 130729-21 130729-23 130729-41

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

Enviro-Chem, Inc. Laboratories 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-590f CA-DHS ELAP CERTIFICATE #1555	\ /	Turnaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 72 Hours 0 72 Hours Other	nd Time	XII	SHANTAINERS	NOITAVA3	Salars Stools (10cs) (APT) 82108 (LPH) (LPH) (APT) 820015	5 Ned Mari		Misc.
SAMPLEID	LABID	SAM	SAMPLING DATE TIME	HTAM	_		Analysis		Required	COMMENTS
7-925	13074-6	7/25/13	7/25/19 13:22	2015	_	07				
7-9260	11,5-7	2/25/13	17:35	Soul	Paters	07				
					Xupz					
					+					
)		_		
Company Name:					Project Con	ontact: E	Project Contact: EANUINS COLENERAGE,	_	Sampler's Signature:	
	1 H	サイクの			Tol. 7	1	7 37010		Project Name/ID:	GROUND WATER PRUGA
3	5	2			Fax. 717	2- 623			23	
Olly States Lips And	ANDERES CA Y	2110 4			000		2	3 11		
Relinquished by:	1		Received by:	by:	1XXI	\$	Date & Ti	ine: 17	Instructions for Sai	Instructions for Sample Storage After Analysis:
Relinquished by:			Received by:	by:			Date & Time:	īme:	e of	O Return to Client O Store (30 Days)
Relinguished by:			Received by:	by:			Date & Time:	īme:	o other:	
			CHAIN OF		CUSTODY		RECORD			
Date:				WHITE WIT	+ SAMPLE - Y	WHITE WITH SAMPLE • YELLOW TO CLIENT	ENT		Page	e of

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: August 12, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(213)622-3749 Email: Ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program 135335

Lab I.D.: 130805-1

Dear Mr. Philips:

The **analytical results** for the soil sample, received by our laboratory on August 5, 2013, are attached. The sample was received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice Rresident/Program Manager

Andy Wade

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 08/05/13
DATE EXTRACTED: 08/06/13

MATRIX: SOIL
DATE SAMPLED: 08/04/13

DATE ANALYZED: 08/07/13
DATE REPORTED: 08/12/13

REPORT TO: Mr. ERIC PHILIPS

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
Well-MW-13038	130805-1	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

8/7/2013

Units:

mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 130807

Spiked Sample Lab I.D.: 130805-1 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	171	86%	182	91%	6%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	168	84%	75-125					
			0						
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130805-1	130805-2					
O-Terphenyl	60-140%	93%	107%	73%					
Octacosane	60-140%	82%	122%/	82%					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%					(-			
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%	-							

Analyzed	and	Reviewed	By:	
----------	-----	----------	-----	--

* = Surrogate fail due to matrix interference

Final Reviewer: Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE SAMPLED: 08/04/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

SAMPLE I.D.: Well-MW-13038 LAB I.D.: 130805-1

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	7.73	0.3	1	500	5.0	6010B
Barium(Ba)	44.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	1.15	0.5	1	100	1.0	6010B
Chromium Total (Cr)	28.5	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	4.48	1.0	1	8,000	80	6010B
Copper (Cu)	16.7	1.0	1	2,500	25	6010B
Lead (Pb)	27.0	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	15.4	2.5	1	2,000	20	6010B
Selenium (Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	38.8	5.0	1	2,400	24	6010B
Zinc(Zn)	92.7	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

 $\mbox{ND} = \mbox{Below}$ the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)
-- = Not analyzed/not requested

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL
DATE SAMPLED: 08/04/13
DATE SAMPLED: 08/04/13
DATE ANALYZED: 08/05-06/13

REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-1

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal \underline{is} recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

0A/OC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 8/6/2013	8/6/2013							Unit	Unit: mg/Kg(ppm)	pm)
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec	% RPD
Arsenic(As)	130805-2	50.0	103	PASS	15.1	50.0	62.8	%56	60.5	91%	2%
Chromium(Cr)	130805-2	50.0	103	PASS	35.2	50.0	77.1	84%	74.4	78%	7%
Lead(Pb)	130805-2	50.0	94	PASS	3.41	50.0	42.3	78%	40.8	75%	4%
ANAL	ANALYSIS DATE.: 8/5/2013	8/5/2013									
Analysis	Spk.Sample	SOT	SOT	SOT	Sample	Spike	MS	% Rec	MSD	% Rec	% RPD
	۵	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Mercury (Hg)	130802-33	0.125	92	PASS	0	0.125	0.110	%88	0.112	%06	2%

MS/MSD Status:

Analysis	%MS	%MSD	%CS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Chromium(Cr)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20

Batch For Samples:130802-7,8,130805-1,2,27~~40

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE SAMPLED: 08/04/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

SAMPLE I.D.: Well-MW-13038 LAB I.D.: 130805-1

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	NĎ	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL
DATE SAMPLED: 08/04/13
REPORT TO: Mr. ERIC PHILIPS
DATE RECEIVED: 08/05/13
DATE ANALYZED: 08/06/13
DATE REPORTED: 08/12/13

SAMPLE I.D.: Well-MW-13038 LAB I.D.: 130805-1

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL
DATE SAMPLED: 08/04/13
REPORT TO: Mr. ERIC PHILIPS
DATE RECEIVED: 08/05/13
DATE ANALYZED: 08/06/13
DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-1

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PQL X1 SAMPLE RESULT PARAMETER 0.020 ND ACETONE 0.005 ND BENZENE 0.005 ND BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE 0.005 ND BROMODICHLOROMETHANE ND 0.005 BROMOFORM 0.005 ND BROMOMETHANE 0.020 ND 2-BUTANONE (MEK) 0.005 ND N-BUTYLBENZENE 0.005 ND SEC-BUTYLBENZENE 0.005 ND TERT-BUTYLBENZENE 0.010 ND CARBON DISULFIDE 0.005 ND CARBON TETRACHLORIDE 0.005 ND CHLOROBENZENE 0.005 ND CHLOROETHANE ND 0.005 CHLOROFORM 0.005 ND CHLOROMETHANE 0.005 ND 2-CHLOROTOLUENE 0.005 ND 4-CHLOROTOLUENE 0.005 ND DIBROMOCHLOROMETHANE 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 ND 1,2-DIBROMOETHANE 0.005 ND DIBROMOMETHANE 0.005 ND 1,2-DICHLOROBENZENE 0.005 1,3-DICHLOROBENZENE ND 0.005 ND 1,4-DICHLOROBENZENE 0.005 ND DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE 0.005 ND 1,2-DICHLOROETHANE 0.005 ND 1,1-DICHLOROETHENE

ND

ND

ND

0.005

0.005

0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:_

CIS-1,2-DICHLOROETHENE

1,2-DICHLOROPROPANE

TRANS-1, 2-DICHLOROETHENE

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE ANALYZED: 08/06/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-1

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER ONII. mg/Rg = 14.	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

Machine:

8/6/2013

-

Matrix:

Solid/Soil/Liquid

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 130806-LCS1/2

BATCH ID: 130806-LCS1/2

opined campie man in-									
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.042	85%	0.049	97%	13%	75-125	0-20
Chlorobenzene	0	0.050	. 0.046	91%	0.051	101%	10%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.042	85%	0.048	97%	12%	75-125	0-20
Toluene	0	0.050	0.044	89%	0.049	98%	10%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.043	87%	0.049	97%	11%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.059	117%	75-125
Chlorobenzene	0.050	0.057	114%	75-125
Chloroform	0.050	0.059	119%	75-125
1,1-Dichlorothene	0.050	0.054	108%	75-125
Ethylbenzene	0.050	0.058	117%	75-125
o-Xylene	0.050	0.059	118%	75-125
m,p-Xylene	0.100	0.113	113%	75-125
Toluene	0.050	0.056	113%	75-125
1,1,1-Trichloroethane	0.050	0.060	119%	75-125
Trichloroethene (TCE)	0.050	0.056	111%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	130802-12	130802-13	130802-14	130802-15	130802-45	130802-46
Dibromofluoromethane	50.0	70-130	115%	117%	108%	105%	103%	109%	112%
Toluene-d8	50.0	70-130	103%	105%	101%	98%	95%	100%	69*%
4-Bromofluorobenzene	50.0	70-130	94%	96%	96%	105%	82%	77%	58*%
Surrogate Recovery	spk conc	ACP %RC	%RC	/%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			130805-21~23	130805-1	130805-2	130805-26	130805-46		
Dibromofluoromethane	50.0	70-130	99%	166*%	0*%	100%	96%		
Toluene-d8	50.0	70-130	92%	109%	102%	101%	101%		
4-Bromofluorobenzene	50.0	70-130	78%	101%/	89%	98%	91%		
								0	
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									

Surrogate Recovery	spk conc	ACP %RC	%RC						
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

Misc.	Required		Sampler's Signature:	Project Name/10: Overs Lake Growind water Program	135335	4	Dispose of O Return to Client O Store (30 Days) Other:	
BOISB (TOH) CAL 22 metab	Analysis Req		Philips ein Felden, com	5706 Proj	-4954	Date & Time: 8:2 lan	Same of U	RECORD
F CONTAINERS FRATION	TEMF	10/201	Project Contact: Eric Ephilys@KI	Tel: 213-622-	Fax: 213-612	Y Interpret	Marie	OF CUSTODY
Turnaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 77 Weeth (Standard)	SAMPLING DATE TIME			0	60116	Received by:	Received by	CHAIN
Laboratories renue, : (909) 590-5907 (LABID		dev	Sf. # 620	3	1000	San	1
Enviro-Chem, Inc. Laboratories 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-5907 CA-DHS ELAP CERTIFICATE #1555	SAMPLEID		Company Name: Kleinfelder	Address: 235 W 6# Sf.	City/State/Zip: Los Angeles	Relinquished by: Mut	Relinquished by:	Kelinquisned by:

of

Page

Date:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: August 12, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(213)622-3749 Email:Ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program 135335

Lab I.D.: 130805-2

Dear Mr. Philips:

The **analytical results** for the soil sample, received by our laboratory on August 5, 2013, are attached. The sample was received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 08/05/13

MATRIX: SOIL DATE EXTRACTED: 08/06/13

DATE ANALYZED: 08/07/13

DATE SAMPLED: 07/31/13
REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T927 (MW12)	130805-2	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909)590-5905 Fax (909)590-5907

Units: mg/Kg (PPM)

8015B Soil/Solid QC

Date Analyzed: <u>8/7/2013</u>

Solid/Sludge Matrix:

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 130807

Spiked Sample Lab I.D.: 130805-1 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	171	86%	182	91%	6%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	168	84%	75-125					
Surrogate Recovery	ACP%	%REC	%REC /	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130805-1	130805-2					
O-Terphenyl	60-140%	93%	107%	73%					
Octacosane	60-140%	82%	122%	82%					
				1					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analyzed and Reviewed By:	140
0	* = Surrogate fail due to matrix interference

Final Reviewer: Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 07/31/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 08/05/13

DATE ANALYZED: 08/05-06/13

DATE REPORTED: 08/12/13

SAMPLE I.D.: **T927 (MW12)**LAB I.D.: 130805-2

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	15.1	0.3	1	500	5.0	6010B
Barium(Ba)	64.9	5.0	1	10,000	100	6010B
Beryllium (Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	35.2	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	5.57	1.0	1	8,000	80	6010B
Copper (Cu)	10.4	1.0	1	2,500	25	6010B
Lead (Pb)	3.41	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	10.1	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	41.1	5.0	1	2,400	24	6010B
Zinc(Zn)	25.5	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)
-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL DATE RECEIVED: 08/05/13

DATE SAMPLED: 07/31/13

DATE ANALYZED: 08/05-06/13

REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-2

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

04/0C for Metals Analysis -- TTLC--SOLIDISOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

 ANAL	ANALYSIS DATE: 8/6/2013	8/6/2013							Unit	Unit : <u>mg/Kg(ppm)</u>	(mdi
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec	% RPD
Arsenic(As)	130805-2	50.0	103	PASS	15.1	50.0	62.8	95%	60.5	91%	2%
Chromium(Cr)	130805-2	50.0	103	PASS	35.2	50.0	1.77	84%	74.4	78%	1%
Lead(Pb)	130805-2	50.0	94	PASS	3.41	50.0	42.3	78%	40.8	75%	4%
ANAL	ANALYSIS DATE.: 8/5/2013	8/5/2013									
Analysis	Spk.Sample	LCS	LCS "Poc	LCS	Sample	Spike	SW	% Rec	MSD	% Rec	% RPD
	2	CONC.	/01/CC.	201710	Mean	2000		0		COL	

MSD 90%

0.112

%88 MS

STATUS PASS

CONC. 0.125

130802-33

Mercury (Hg)

MS/MSD Status:

Analysis	%MS	%MSD	%CCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Chromium(Cr)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0 ~ 20

Batch For Samples:130805-1,2

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 07/31/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 08/05/13

DATE ANALYZED: 08/06/13

DATE REPORTED: 08/12/13

SAMPLE I.D.: **T927 (MW12)**

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

LAB I.D.: 130805-2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE SAMPLED: 07/31/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

SAMPLE I.D.: **T927 (MW12)**LAB I.D.: 130805-2

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE SAMPLED: 07/31/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-2

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/05/13

DATE SAMPLED: 07/31/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/12/13

METHOD BLANK FOR LAB I.D.: 130805-2

......

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

Machine:

8/6/2013

Matrix:

Solid/Soil/Liquid

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

C

BATCH ID: 130806-LCS1/2 Spiked Sample Lab I.D.: 130806-LCS1/2

Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.042	85%	0.049	97%	13%	75-125	0-20
Chlorobenzene	0	0.050	0.046	91%	0.051	101%	10%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.042	85%	0.048	97%	12%	75-125	0-20
Toluene	0	0.050	0.044	89%	0.049	98%	10%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.043	87%	0.049	97%	11%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.059	117%	75-125
Chlorobenzene	0.050	0.057	114%	75-125
Chloroform	0.050	0.059	119%	75-125
1,1-Dichlorothene	0.050	0.054	108%	75-125
Ethylbenzene	0.050	0.058	117%	75-125
o-Xylene	0.050	0.059	118%	75-125
m,p-Xylene	0.100	0.113	113%	75-125
Toluene	0.050	0.056	113%	75-125
1,1,1-Trichloroethane	0.050	0.060	119%	75-125
Trichloroethene (TCE)	0.050	0.056	111%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	130802-12	130802-13	130802-14	130802-15	130802-45	130802-46
Dibromofluoromethane	50.0	70-130	115%	117%	108%	105%	103%	109%	112%
Toluene-d8	50.0	70-130	103%	105%	101%	98%	95%	100%	69*%
4-Bromofluorobenzene	50.0	70-130	94%	96%	96%	105%	82%	77%	58*%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			130805-21~23	130805-1/	130805-2	130805-26	130805-46		
Dibromofluoromethane	50.0	70-130	99%	166*%	0*%	100%	96%		
Toluene-d8	50.0	70-130	92%	109%	102%	101%	101%		
4-Bromofluorobenzene	50.0	70-130	78%	101%	89%	98%	91%		
					1	/			
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

	Misc.	COMMENTS		Olivins Lake	choolingte	Instructions for Sample Storage After Analysis:	O Return to Client O Store (30 Days)	-
		Required		Sampler's Signature: Project Name/ID:	135335	113 Instructions for S	25 O Other:	
2	8260B(VOCS) 8260B(VOCS)	Analysis		Lips		Date & Time: 8	Date & Ting: 5	RECORD
	F CONTAINERS BAUTARE NOITAVRE	TEMP	ON - 1 - 100 THE SAME ON - 1 - 100	Project Contact Phi	Fax:	Anix Frait		OF CUSTODY RI
	Turnaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 72 Hours XT Week (Standard) Other:	SAMPLING DATE TIME	131135115	701	CAGILOY	Received by:	Received by: Received by:	CHAIN
,	aboratories nue, 909) 590-5907 √TE #1555	LABID	7-70805)	126	waller	11ed Gan	3 ft	1
	Enviro-Chem, Inc. Laboratories 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-5907 CA-DHS ELAP CERTIFICATE #1555	SAMPLEID	T927 (MW) 12	Company Name; Leinfelder	Address: CD N C	Relinquished by:	Relinquished by:	~ / ~ / ×

WHITE WITH SAMPLE · YELLOW TO CLIENT

Page of

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: August 16, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(213)622-3749 Email:Ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program 135335

Lab I.D.: 130809-4

Dear Mr. Philips:

The **analytical results** for the soil sample, received by our laboratory on August 9, 2013, are attached. The sample was received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wand

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 08/09/13 DATE EXTRACTED: 08/13/13

DATE SAMPLED: 08/08/13

MATRIX: SOIL

DATE ANALYZED: 08/13/13 DATE REPORTED: 08/16/13

REPORT TO: Mr. ERIC PHILIPS _______

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
Т929	130809-4	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGEC11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: _____

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

8/13/2013

Units:

mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 130813

Spiked Sample Lab I.D.:

130809-4 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	209	105%	207	104%	1%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	208	104%	75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130809-4						
O-Terphenyl	60-140%	66%	70%						
Octacosane	60-140%	70%	73%						
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analyzed and Reviewe	d By:	1	w	
	-			

* = Surrogate fail due to matrix interference

Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 08/08/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 08/09/13

DATE ANALYZED: 08/09-13/13

DATE REPORTED: 08/16/13

SAMPLE I.D.: **T929** LAB I.D.: 130809-4

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	6.44	0.3	1	500	5.0	6010B
Barium(Ba)	101	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	32.3	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	7.77	1.0	1	8,000	80	6010B
Copper (Cu)	19.4	1.0	1	2,500	25	6010B
Lead (Pb)	3.51	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	4.50	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	60.1	5.0	1	2,400	24	6010B
Zinc(Zn)	50.0	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal \underline{is} recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 08/08/13

DATE ANALYZED: 08/09-13/13

DATE SAMPLED: 08/08/13

REPORT TO: Mr. ERIC PHILIPS

DATE ANALYZED: 08/09-13/

DATE REPORTED: 08/16/13

METHOD BLANK FOR LAB I.D.: 130809-4

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

OA/OC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 8/13/2013	8/13/2013							Unit	Unit : <u>mg/Kg(ppm)</u>	(md
Analysis	Spk.Sample		SOT	SOT	Sample	Spike	MS	% Rec	MSD	% Rec	% RPD
	Q	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Arsenic(As)	130809-4	50.0	92	PASS	6.44	20.0	26.0	%66	55.2	%86	2%
Chromium(Cr)	130809-4	50.0	102	PASS	32.3	50.0	74.5	84%	73.0	81%	4%
Lead(Pb)	130809-4	50.0	411	PASS	3.51	50.0	49.4	95%	48.7	%06	2%
ANAL	ANALYSIS DATE.: 8/13/2013	8/13/2013									
Analysis	Spk.Sample	FCS	SOT	rcs	Sample	Spike	MS	% Rec	MSD	% Rec	% RPD
	<u></u>	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	
Mercury (Ha)	130812-2	0.125	95	PASS	0	0.125	0.108	%98	0.112	%68	3%

MS/MSD Status:

Analysis	%ws	%WSD	%CCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Chromium(Cr)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75~125	75 ~ 125	85 ~ 115	0~20

Batch For Samples:130809-4

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/09/13

DATE SAMPLED: 08/08/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/16/13

SAMPLE I.D.: **T929** LAB I.D.: 130809-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1.3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 08/08/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 08/09/13

DATE ANALYZED: 08/09/13

DATE REPORTED: 08/16/13

SAMPLE I.D.: **T929** LAB I.D.: 130809-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER UNIT: mg/kg - M.	SAMPLE RESULT	PQL X1	
1,3-DICHLOROPROPANE	ND	0.005	_
2,2-DICHLOROPROPANE	ND	0.005	_
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1,3-DICHLOROPROPENE	ND	0.005	_
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	_
ETHYLBENZENE	ND	0.005	
2-HEXANONE	ND	0.020	_
HEXACHLOROBUTADIENE	ND	0.005	_
ISOPROPYLBENZENE	ND	0.005	_
4-ISOPROPYLTOLUENE	ND	0.005	_
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	24
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	_
NAPHTHALENE	ND	0.005	_
N-PROPYLBENZENE	ND	0.005	_
STYRENE	ND	0.005	_
1,1,1,2-TETRACHLOROETHANE	ND	0.005	_
1,1,2,2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE)	ND	0.005	_
TOLUENE	ND	0.005	_
1,2,3-TRICHLOROBENZENE	ND	0.005	_
1,2,4-TRICHLOROBENZENE	ND	0.005	_
1,1,1-TRICHLOROETHANE	ND	0.005	_
1,1,2-TRICHLOROETHANE	ND	0.005	_
TRICHLOROETHENE (TCE)	ND	0.005	_
TRICHLOROFLUOROMETHANE	NĎ	0.005	_
1,2,3-TRICHLOROPROPANE	ND	0.005	_
1,2,4-TRIMETHYLBENZENE	ND	0.005	_
1,3,5-TRIMETHYLBENZENE	ND	0.005	_
VINYL CHLORIDE	ND	0.005	_
M/P-XYLENE	ND	0.010	_
O-XYLENE	ND	0.005	_

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/09/13

DATE ANALYZED: 08/09/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/16/13

METHOD BLANK FOR LAB I.D.: 130809-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLÜENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ŊD	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND CONTINUE ON PAGE #2	0.005

DATA REVIEWED AND APPROVED BY:

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

.................

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 08/09/13

DATE SAMPLED: 08/08/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/16/13

METHOD BLANK FOR LAB I.D.: 130809-4

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT
ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

8/9/2013

Matrix:

Solid/Soll/Liquid

Machine:

C

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 130809-LCS1/2

BATCH ID: 130809-LCS1/2

Spiked Sample Lab I.D.:		120003-FC3	112	BATOTTE: 100000 E00 III					
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.044	87%	0.041	82%	6%	75-125	0-20
Chlorobenzene	0	0.050	0.046	92%	0.044	88%	4%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.043	86%	0.043	87%	0%	75-125	0-20
Toluene	0	0.050	0.044	89%	0.043	85%	4%	75-125	0-20
Trichtoroethene (TCE)	0	0.050	0.044	88%	0.042	84%	5%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.050	101%	75-125
Chlorobenzene	0.050	0.051	101%	75-125
Chloroform	0.050	0.053	106%	75-125
1,1-Dichlorothene	0.050	0.049	97%	75-125
Ethylbenzene	0.050	0.055	109%	75-125
o-Xylene	0.050	0.055	110%	75-125
m,p-Xylene	0.100	0.109	109%	75-125
Toluene	0.050	0.051	102%	75-125
1,1,1-Trichloroethane	0.050	0.054	107%	75-125
Trichloroethene (TCE)	0.050	0.050	99%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	130808-18	130808-13	130808-19	130808-15	130809-4	1
Dibromofluoromethane	50.0	70-130	109%	111%	109%	104%	129%	102%	1
Toluene-d8	50.0	70-130	98%	100%	71%	96%	76%	105%	
4-Bromofluorobenzene	50.0	70-130	91%	91%	67*%	88%	74%	76%	1
								1	/
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

3

CAL TZ Metals	Analysis Required comments								infelder. Sampler's Signature	Project Name/ID: Le Groundwater Program		Date & Time 3/6/1/3 0 8 Instructions for Sample Storage After Analysis:	Daes Ing of Store (30 Days)	O Other: Date & Time:	
F CONTRINERS ERATURE SPOS VOC SOIS B VOC RACTOR SALS METALS	LEWP	, / - 1 710S	4027			i			Project Contact: ePhilips Solden Com	Tel: 213-627-3706	FEET 213-612:4954	Ju	5		OF CUSTODY RECORD
Turnaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 1 Week (Standard) Other:	SAMPLING DATE TIME	8/8/13 0800								250	40116	Received by:	Received by:	Received by:	CHAIN
	LABID	4-408051	-		*					029 F 5 Y		M		\	
Enviro-Chem, Inc. Laboratories 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-5907 CA-DHS ELAP CERTIFICATE #1555	SAMPLE ID MA	TG29 (MINIA)		N.	×				Company Name: Company Name:	Address: 235 W. 6th 9	City/State/Zip. Los And	Relinquished by:	Refinduished by:	Relinquished by:	

WHITE WITH SAMPLE · YELLOW TO CLIENT

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: August 29, 2013

Mr. Eric Philips

Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program

Lab I.D.: 130823-91, -92, -93

Dear Mr. Philips:

The analytical results for the soil samples, received by our laboratory on August 23, 2013, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email:Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

DATE RECEIVED: 08/23/13

MATRIX: SOIL

DATE EXTRACTED: 08/27/13

DATE SAMPLED: 08/17&22/13

DATE ANALYZED: 08/27/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T-931	130823-91	ND	ND	ND	1
T-930	130823-92	ND	ND	ND	1
T-920	130823-93	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL/DETECTION LIMIT

Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

8/13/2013

Units:

mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

130823-91 Batch I.D.:

Spiked Sample Lab I.D.: 130823-41 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	156	78%	156	78%	0%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	154	77%	75-125					
								4	
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130823-91	130823-92	130823-93				
O-Terphenyl	60-140%	67%	93%	97%	69%				
Octacosane	60-140%	71%	108%	107%	71%				
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%		1						-

	12	
Analyzed and Reviewed By:	5	

* = Surrogate fail due to matrix interference Final Reviewer:

Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/26&28/13

DATE REPORTED: 08/29/13

SAMPLE I.D.: T-931 LAB I.D.: 130823-91

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	11.0	0.3	1	500	5.0	6010B
Barium(Ba)	61.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	6.48	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	3.49	1.0	1	8,000	80	6010B
Copper(Cu)	5.00	1.0	1	2,500	25	6010B
Lead(Pb)	1.94	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	3.73	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	22.6	5.0	1	2,400	24	6010B
Zinc(Zn)	18.6	0.5	1	5,000	250	6010E

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)
-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

SAMPLE I.D.: T-930 LAB I.D.: 130823-92

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	9.63	0.3	1	500	5.0	6010B
Barium(Ba)	104	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	7.80	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	4.03	1.0	1	8,000	80	6010B
Copper(Cu)	15.9	1.0	1	2,500	25	6010B
Lead (Pb)	2.29	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1.	100	1.0	6010B
Silver(Aq)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	36.5	5.0	1	2,400	24	6010B
Zinc(Zn)	25.4	0.5	1	5,000	250	6010E

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal \underline{is} recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/22/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

SAMPLE I.D.: T-920 LAB I.D.: 130823-93

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	5.46	0.3	1	500	5.0	6010B
Barium(Ba)	46.7	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	7.39	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	4.42	1.0	1	8,000	80	6010B
Copper (Cu)	12.0	1.0	1	2,500	25	6010B
Lead(Pb)	2.09	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium (Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	38.1	5.0	1	2,400	24	6010B
Zinc(Zn)	31.2	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel (213) 622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL
DATE SAMPLED: 08/17&22/13

DATE RECEIVED: 08/23/13

DATE ANALYZED: 08/26&28/13

REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 08/29/13

METHOD BLANK FOR LAB I.D.: 130823-91, -92, -93

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium (Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010E
Nickel(Ni)	ND	2.5	1	2,000	20	6010E
Selenium(Se)	ND	1.0	1	100	1.0	6010E
Silver(Ag)	ND	1.0	1	500	5.0	6010E
Thallium(Tl)	ND	1.0	1	700	7.0	6010E
Vanadium(V)	ND	5.0	1	2,400	24	6010E
Zinc(Zn)	ND	0.5	1	5,000	250	6010E

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

 \star = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

04/0C for Metals Analysis -- TTLC--SOLIDISOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANA	ANALYSIS DATE: 8/28/2013	8/28/2013							Unit	Unit: mg/Kg(ppm)	(mdc
Analysis	Spk.Sample		SOT	SOT	Sample	Spike	MS	% Rec	MSD	% Rec	% RPD
	a	CONC.	%Kec.	SIAIUS	Kesult	Conc.		S		MSD	
Arsenic(As)	130823-91	50.0	66	PASS	11.0	50.0	59.1	%96	9.09	%66	3%
Copper(Cu)	130823-91	50.0	98	PASS	5.00	50.0	51.9	94%	52.9	%96	2%
Lead(Pb)	130823-91	50.0	103	PASS	1.94	50.0	47.4	91%	48.5	93%	2%
ANAL	ANALYSIS DATE.: 8/26/2013	8/26/2013									
Analysis	Spk.Sample	SOT	SOT		Sample	Spike	MS	% Rec	MSD	% Rec	% RPD
	QI	CONC.	%Rec.	STATUS	Result	Conc.		MS		MSD	

MS/MSD Status:

Analysis	%MS	%MSD	%LCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Copper(Cu)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75~125	75 ~ 125	85 ~ 115	0 ~ 20

Batch For Samples:130823-91,92,93

2%

%98

0.107

0.102

0.125

PASS

96

0.125

130826-13

Mercury (Hg)

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

DATE RECEIVED: 08/23/13 MATRIX: SOIL DATE ANALYZED: 08/27/13 DATE SAMPLED: 08/17/13 DATE REPORTED: 08/29/13 REPORT TO: Mr. ERIC PHILIPS

LAB I.D.: 130823-91 SAMPLE I.D.: T-931 ______

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

SAMPLE I.D.: **T-931** LAB I.D.: 130823-91

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM POL X1 SAMPLE RESULT PARAMETER 0.005 ND 1,3-DICHLOROPROPANE 0.005 ND 2,2-DICHLOROPROPANE 0.005 1,1-DICHLOROPROPENE ND 0.005 ND CIS-1,3-DICHLOROPROPENE 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ND ETHYLBENZENE 0.020 ND 2-HEXANONE 0.005 <u>HEXACHLOROBUTADIENE</u> ND 0.005 ISOPROPYLBENZENE ND 0.005 ND 4-ISOPROPYLTOLUENE 0.020 4-METHYL-2-PENTANONE (MIBK) ND 0.005 ND METHYL tert-BUTYL ETHER (MTBE) 0.010 ND METHYLENE CHLORIDE 0.005 ND NAPHTHALENE 0.005 N-PROPYLBENZENE ND 0.005 ND STYRENE 0.005 ND 1,1,1,2-TETRACHLOROETHANE 0.005 ND 1,1,2,2-TETRACHLOROETHANE 0.005 ND TETRACHLOROETHENE (PCE) 0.005 ND TOLUENE 0.005 1,2,3-TRICHLOROBENZENE ND 0.005 1,2,4-TRICHLOROBENZENE ND 0.005 ND 1,1,1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE 0.005 ND TRICHLOROETHENE (TCE) 0.005 ND TRICHLOROFLUOROMETHANE 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND ND 0.005 VINYL CHLORIDE 0.010 ND M/P-XYLENE 0.005 O-XYLENE

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL
DATE SAMPLED: 08/17/13
DATE SAMPLED: 08/17/13
REPORT TO: Mr. ERIC PHILIPS
DATE REPORTED: 08/29/13

SAMPLE I.D.: **T-930** LAB I.D.: 130823-92

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	NĎ	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND A BROWN	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

SAMPLE I.D.: **T-930** LAB I.D.: 130823-92

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

DATE RECEIVED: 08/23/13 MATRIX: SOIL DATE ANALYZED: 08/27/13 DATE SAMPLED: 08/22/13 DATE REPORTED: 08/29/13 REPORT TO: Mr. ERIC PHILIPS

LAB I.D.: 130823-93 SAMPLE I.D.: **T-920**

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND A	0.005

DATA REVIEWED AND APPROVED BY:

---- TO BE CONTINUED ON PAGE #2 ----

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

DATE RECEIVED: 08/23/13 MATRIX: SOIL DATE ANALYZED: 08/27/13 DATE SAMPLED: 08/22/13 DATE REPORTED: 08/29/13 REPORT TO: Mr. ERIC PHILIPS _____

LAB I.D.: 130823-93 SAMPLE I.D.: T-920

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17&22/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

METHOD BLANK FOR LAB I.D.: 130823-91, -92, 93

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1.2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program

MATRIX: SOIL

DATE RECEIVED: 08/23/13

DATE SAMPLED: 08/17&22/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 08/29/13

METHOD BLANK FOR LAB I.D.: 130823-91, -92, 93

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

8/27/2013

Matrix:

Solid/Soil/Liquid

Machine:

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Sniked Sample Lab ID:

BATCH ID: 130827-LCS1/2

Spikeu Sailipie Lau I.D		130021-103	114				DATOTTIO	. IOOOZI-LO	O 17 AL
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.043	85%	0.041	82%	3%	75-125	0-20
Chlorobenzene	0	0.050	0.049	98%	0.058	115%	18%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.044	88%	0.050	99%	11%	75-125	0-20
Toluene	0	0.050	0.047	95%	0.046	92%	3%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.042	83%	0.042	83%	0%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.049	99%	75-125
Chlorobenzene	0.050	0.058	116%	75-125
Chloroform	0.050	0.058	116%	75-125
1,1-Dichlorothene	0.050	0.054	107%	75-125
Ethylbenzene	0.050	0.060	120%	75-125
o-Xylene	0.050	0.060	120%	75-125
m,p-Xylene	0.100	0.120	120%	75-125
Toluene	0.050	0.053	107%	75-125
1,1,1-Trichloroethane	0.050	0.055	110%	75-125
Trichloroethene (TCE)	0.050	0.050	99%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC \	%RC	%RC
Sample I.D.			M-BLK	130823-2	130823-91	130823-92	130823-93	130826-33	
Dibromofluoromethane	50.0	70-130	126%	138*%	126%	125%	129%	132*%	
Toluene-d8	50.0	70-130	102%	71%	101%	103%	99%	103%	
4-Bromofluorobenzene	50.0	70-130	91%	54*%	81%	88%	82%	92%	
					G				
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130		1					
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130						1	

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

✓ Dispose of O Return to Client O Store (30 Days) Instructions for Sample Storage After Analysis: COMMENTS GROUND WATER MM-S Misc. MW-1 MW-7 Sampler's Signature: Project Name/ID: PROOPER O Other: **Analysis Required** while EPHILIPS @ KLEINFELDER COM Date & Time: Date & Time: PHILIPS #d1. 81.5108 570A 8 0028 Tel: 213-622-3706 **CHAIN OF CUSTODY RECORD** 4954 Project Contact: E1216 -219-512 LONK **PRESERVATION** *<u>ARUTARA</u>* Fax: No. OF CONTAINERS Soul XIRTAM Received by: Received by: Received by: 17:00 8/17/13 1.3:15 8/22/13/07:27 SAMPLING DATE TIME **Turnaround Time** 91104 0 1 Week (Standa O Same Day 0 24 Hours 0 48 Hours 8/11/13 #620 Enviro-Chem, Inc. Laboratories Tel: (909) 590-5905 Fax: (909) 590-5907 LABID ANGFLES CA-DHS ELAP CERTIFICATE #1555 6TH ST. 1214 E. Lexington Avenue, Pomona, CA 91766 KIEINPELLYER 3 SAMPLE ID 930 920 Address: 235 -931 Company Name: Relinquished by: Relinquished by: Relinquished by: City/State/Zip:

WHITE WITH SAMPLE · YELLOW TO CLIENT

Date:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 13, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(949)727-4466 Email:ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program / 135335

Lab I.D.: 130906-40, -41

Dear Mr. Philips:

The **analytical results** for the soil samples, received by our laboratory on September 6, 2013, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

DATE RECEIVED: 09/06/13

MATRIX: SOIL

DATE EXTRACTED: 09/09/13
DATE ANALYZED: 09/09/13

DATE SAMPLED: 08/30&09/05/13
REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T-919	130906-40	ND	ND	ND	1
T-921	130906-41	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

9/9/2013

Units: mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 130906-04

Spiked Sample Lab I.D.:

130906-04 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	229	115%	236	118%	3%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP	6"				
C11~C22 Range	200	247	124%	75-125					
O Page van	ACP%	%REC	%REC						
Surrogate Recovery Sample I.D.	ACP 76	MB	130906-03	130906-04	130906-05	130906-06	130906-07	130906-08/	130906-40
O-Terphenyl	60-140%	78%	78%	88%	76%	82%	92%	84%	87%
Octacosane	60-140%	63%	61%	95%	81%	73%	85%	80% \	75%
Surrogate Recovery	ACP%	%REC	%REC						
Sample I.D.		130906-41							
O-Terphenyl	60-140%	87%							
Octacosane	60-140%	88%							
Surrogate Recovery	ACP%	%REC	%REC						
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analyzed and Reviewed By:	

Note: LCS, MS, MSD are in control therefore results are in control. Final Reviewer:

^{* =} Surrogate fail due to matrix interference

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 09/06/13
DATE SAMPLED: 08/30/13
REPORT TO: Mr. ERIC PHILIPS
DATE REPORTED: 09/13/13

SAMPLE I.D.: **T-919** LAB I.D.: 130906-40

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	7.05	0.3	1	500	5.0	6010B
Barium(Ba)	201	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	27.0	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	-	500	5.0	7196A
Cobalt(Co)	18.0	1.0	1	8,000	80	6010B
Copper (Cu)	42.0	1.0	1	2,500	25	6010B
Lead(Pb)	5.64	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	132	5.0	1	2,400	24	6010B
Zinc(Zn)	139	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 09/06/13

DATE SAMPLED: 09/05/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

SAMPLE I.D.: **T-921** LAB I.D.: 130906-41

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	4.82	0.3	1	500	5.0	6010B
Barium(Ba)	47.4	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	15.9	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.2	1	500	5.0	7196A
Cobalt(Co)	9.09	1.0	1,	8,000	80	6010B
Copper (Cu)	20.2	1.0	1	2,500	25	6010B
Lead(Pb)	3.53	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	65.9	5.0	1	2,400	24	6010B
Zinc(Zn)	40.4	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:__

CAL-DHS ELAP CERTIFICATE No.: 1555

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 09/06/13

DATE SAMPLED: 08/30&09/05/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

METHOD BLANK FOR LAB I.D.: 130906-40, -41

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	44	0.2	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead(Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury(Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by: ______CAL-DHS ELAP CERTIFICATE No.: 1555

OA/QC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 9/10/2013	9/10/2013							Unit	Unit: mg/Kg(ppm)	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	NSD	% Rec MSD	% RPD
Arsenic(As)	13090-LCS	50.0	100	PASS	0	50.0	49.9	100%	49.4	%66	1%
Chromium(Cr)	13090-LCS	50.0	91	PASS	0	50.0	49.5	%66	49.0	%86	1%
Lead(Pb)	13090-LCS	50.0	103	PASS	0	20.0	51.2	102%	50.6	101%	4%
ANAL	ANALYSIS DATE.: 9/10/2013	9/10/2013									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SW	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Ha)	130909-71	0.125	92	PASS	0	0.125	0.114	91%	0.110	%88	3%

MS/MSD Status:

Analysis	%MS	%MSD	%TCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Chromium(Cr)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20

Batch For Samples:130906-40,41

ANALYST:

FINAL REVIEWER:

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 09/06/13
DATE SAMPLED: 08/30/13
REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 09/13/13

SAMPLE I.D.: **T-919** LAB I.D.: 130906-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 09/06/13

DATE SAMPLED: 08/30/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

CAMPLE T. D. . **H. 010**

SAMPLE I.D.: **T-919** LAB I.D.: 130906-40

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1	
1,3-DICHLOROPROPANE	ND	0.005	
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1,3-DICHLOROPROPENE	ND	0.005	-
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	
ETHYLBENZENE	ND	0.005	
2-HEXANONE	ND	0.020	Ξ
HEXACHLOROBUTADIENE	ND	0.005	Ξ
ISOPROPYLBENZENE	ND	0.005	
4-ISOPROPYLTOLUENE	ND	0.005	
4-METHYL-2-PENTANONE (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
N-PROPYLBENZENE	ND	0.005	
STYRENE	ND	0.005	
1,1,1,2-TETRACHLOROETHANE	ND	0.005	
1,1,2,2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE)	ND	0.005	
TOLUENE	ND	0.005	_
1,2,3-TRICHLOROBENZENE	ND	0.005	
1,2,4-TRICHLOROBENZENE	ND	0.005	
1,1,1-TRICHLOROETHANE	ND	0.005	
1,1,2-TRICHLOROETHANE	ND	0.005	_
TRICHLOROETHENE (TCE)	ND	0.005	
TRICHLOROFLUOROMETHANE	ND	0.005	_
1,2,3-TRICHLOROPROPANE	ND	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0.005	_
1,3,5-TRIMETHYLBENZENE	ND	0.005	
VINYL CHLORIDE	ND	0.005	
M/P-XYLENE	ND	0.010	
O-XYLENE	ND	0.005	_

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 09/06/13

DATE SAMPLED: 09/05/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

SAMPLE I.D.: T-921 LAB I.D.: 130906-41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel (949) 727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED:09/06/13 DATE SAMPLED: 09/05/13 DATE ANALYZED:09/07/13 REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 09/13/13

LAB I.D.: 130906-41 SAMPLE I.D.: **T-921**

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL DATE RECEIVED: 09/06/13
DATE SAMPLED: 08/30&09/05/13
REPORT TO: Mr. ERIC PHILIPS DATE REPORTED: 09/13/13

METHOD BLANK FOR LAB I.D.: 130906-40, -41

METHOD BLANK FOR LAB 1.D.: 130906-40, -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND DIGE III	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:_

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(949)727-4466 Email:ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program / 135335

MATRIX: SOIL

DATE RECEIVED: 09/06/13

DATE SAMPLED: 08/30&09/05/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/13/13

METHOD BLANK FOR LAB I.D.: 130906-40, -41

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
<u>HEXACHLOROBUTADIENE</u>	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

Machine:

9/7/2013

C

Matrix:

Solid/Soil/Liquid

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.: 130907-LCS1/2

BATCH ID: 130907-LCS1/2

Opined Campio Edb iibii				to the same of the					,
Analyte	S.R,	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.048	96%	0.044	88%	8%	75-125	0-20
Chlorobenzene	0	0.050	0.050	100%	0.046	92%	8%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.046	92%	0.046	92%	0%	75-125	0-20
Toluene	0	0.050	0.051	102%	0.047	94%	8%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.046	92%	0.044	88%	4%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.050	100%	75-125
Chlorobenzene	0.050	0.051	102%	75-125
Chloroform	0.050	0.050	100%	75-125
1,1-Dichlorothene	0.050	0.045	90%	75-125
Ethylbenzene	0.050	0.054	108%	75-125
o-Xylene	0.050	0.054	108%	75-125
m,p-Xylene	0.100	0.108	108%	75-125
Toluene	0.050	0.052	104%	75-125
1,1,1-Trichloroethane	0.050	0.050	100%	75-125
Trichloroethene (TCE)	0.050	0.049	98%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	130906-40	130906-41	130906-42	130906-43	130906-44	130906-45
Dibromofluoromethane	50.0	70-130	115%	124%	114%	119%	119%	123%	126%
Toluene-d8	50.0	70-130	101%	96%	103%	103%	104%	103%	103%
4-Bromofluorobenzene	50.0	70-130	88%	74%	88%	88%	86%	86%	86%
			1						
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			130906-46	130906-47	130906-48	130906-49	130906-50	130906-51	130906-52
Dibromofluoromethane	50.0	70-130	125%	131*%	128%	132*%	137*%	134*%	140*%
Toluene-d8	50.0	70-130	104%	106%	103%	104%	108%	106%	106%
4-Bromofluorobenzene	50.0	70-130	86%	81%	86%	84%	83%	86%	83%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			130906-53	130906-27		3.5			
Dibromofluoromethane	50.0	70-130	136*%	119%					
Toluene-d8	50.0	70-130	105%	104%					
4-Bromofluorobenzene	50.0	70-130	83%	91%					

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer:

Dispose of O Return to Client O Store (30 Days) Instructions for Sample Storage After Analysis: OUBLE LAYER GROUNDWATER COMMENTS Misc. MW-4 MUSIC Sarubler's Signature process Project Name/ID: O Other: **Analysis Required** EPHILIPS @ KLEINELDRE Tel: 213-622-3700/3750 Date & Time: Date & Time: Fax: 213 612 - 4954 **CHAIN OF CUSTODY RECORD** ERIC PHILIPS えのて となって **PRESERVATION** Project Contact: **TEMPERATURE** No. OF CONTAINERS 200 3 XIATAM Received by: Received by: Received by: 8/20/13 07.07 9/5/13 68:24 SAMPLING DATE TIME **Turnaround Time** 0 72 Hours
0 Week (Standard) 0 24 Hours 0 48 Hours 0 Same Day なののは 4 Enviro-Chem, Inc. Laboratories Tel: (909) 590-5905 Fax: (909) 590-5907 LABID CA-DHS ELAP CERTIFICATE #1555 City/State/Zip: Les Asleriges Er ers 1214 E. Lexington Avenue, Pomona, CA 91766 8/30/2013 KIRINFECIOR SAMPLE ID T-919 Address: 235 1-921 Company Name: Relinquished by: Relinquished by: Relinquished by:

Date:

WHITE WITH SAMPLE · YELLOW TO CLIENT

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 27, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(213)622-3749 Email:Ephilips@kleinfelder.com

Project: Owens Lake GW Program 135335

Lab I.D.: 130920-31, -32

Dear Mr. Philips:

The **analytical results** for the soil samples, received by our laboratory on September 20, 2013, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Vice President/Program Manager

Andy Wangl

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

DATE RECEIVED: 09/20/13 DATE EXTRACTED: 09/24/13

MATRIX: SOIL

DATE ANALYZED: 09/24/13

DATE SAMPLED: 09/14&17/13 REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/27/13

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T918 (MW-3)	130920-31	ND	ND	ND	1
T922 (MW-7)	130920-32	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

POL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

9/24/2013

Units:

mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.:

130920-31

Spiked Sample Lab I.D.: 130924-LCS1/2

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	220	110%	221	111%	0%	75-125	0-20%

LCS STD RECOVERY:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	222	111%	75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	130920-31	130920-32					
O-Terphenyl	60-140%	91%	92%	78%					
Octacosane	60-140%	88%	90%	74%					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analyzed	and	Reviewed	Bv:
Allalyzeu	and	INCAICACA	-y.

* = Surrogate fail due to matrix interference

Note: LCS, MS, MSD are in control therefore results are in control. Final Reviewer: _

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE RECEIVED: 09/20/13

DATE SAMPLED: 09/14/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/27/13

SAMPLE I.D.: **T918 (MW-3)**LAB I.D.: 130920-31

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	26.3	0.3	1	500	5.0	6010B
Barium(Ba)	135	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	48.2	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	6.86	1.0	1	8,000	80	6010B
Copper (Cu)	34.1	1.0	1	2,500	25	6010B
Lead (Pb)	5.90	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	6.78	5.0	1	3,500	350	6010B
Nickel(Ni)	6.82	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	103	5.0	1	2,400	24	6010B
Zinc(Zn)	74.5	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@= Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email:Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

DATE RECEIVED: 09/20/13 MATRIX: SOIL DATE ANALYZED: 09/24/13 DATE SAMPLED: 09/17/13 DATE REPORTED: 09/27/13 REPORT TO: Mr. ERIC PHILIPS

LAB I.D.: 130920-32 SAMPLE I.D.: T922 (MW-7)

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE RESULT	PQL	DF	TTLC LIMIT	STLC LIMIT	EPA METHOD
ANALYZED	ND	1.0	1	500	15	6010B
Antimony(Sb)	3.61	0.3	1	500	5.0	6010B
Arsenic(As)		5.0	1	10,000	100	6010B
Barium(Ba)	22.4	0.5	1	75	0.75	6010B
Beryllium(Be)	ND		1	100	1.0	6010B
Cadmium(Cd)	ND	0.5	1 1	2,500	560/50	6010B
Chromium Total(Cr)	90.9 **	0.5	1	500	5.0	7196A
Chromium VI (Cr6)	c co	0.1	1	8,000	80	6010B
Cobalt(Co)	6.69	1.0	1	2,500	25	6010B
Copper(Cu)	14.2	1.0	1	1,000	5.0	6010B
Lead(Pb)	3.60	0.5	1	20	0.2	7471A
Mercury(Hg)	ND	0.01	1		350	6010B
Molybdenum (Mo)	ND	5.0	1	3,500	20	6010B
Nickel(Ni)	ND	2.5	1	2,000	1.0	6010B
Selenium (Se)	ND	1.0	1	100		6010E
Silver(Ag)	ND	1.0	1	500	5.0	6010E
Thallium (T1)	ND	1.0	1	700	7.0	
Vanadium(V)	149	5.0	1	2,400	24	6010E
Zinc(Zn)	29.5	0.5	1	5,000	250	6010E

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

 \star = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE SAMPLED: 09/14&17/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 09/20/13

DATE ANALYZED: 09/24/13

DATE REPORTED: 09/27/13

METHOD BLANK FOR LAB I.D.: 130920-31, -32

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium (Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal <u>is</u> recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by: _______CAL-DHS ELAP CERTIFICATE No.: 1555

04/0C for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 9/24/2013	9/24/2013							Unit	Unit: mg/Kg(ppm)	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec	% RPD
Arsenic(As)	130920-31	50.0	108	PASS	26.3	50.0	74.0	%56	74.0	95%	%0
Chromium(Cr)	130920-31	50.0	109	PASS	48.2	50.0	107	118%	106	116%	2%
Lead(Pb)	130920-31	50.0	110	PASS	5.90	50.0	50.2	%68	50.4	%68	%0
ANAL	ANALYSIS DATE.: 9/24/2013	9/24/2013									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SW	% Rec MS	QSW	% Rec MSD	% RPD
Mercury (Hg)	130923-27	0.125	94	PASS	0	0.125	0.108	%98	0.110	88%	2%

MS/MSD Status:

Analysis	%MS	%MSD	%CCS	%RPD
Arsenic(As)	PASS	PASS	PASS	PASS
Chromium(Cr)	PASS	PASS	PASS	PASS
Lead(Pb)	PASS	PASS	PASS	PASS
Mercury (Hg)	PASS	PASS	PASS	PASS
Accepted Range	75 ~ 125	75 ~ 125	85~115	0~ 20

Batch For Samples:130920-31,32

ANALYST:

FINAL REVIEWER:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE RECEIVED: 09/20/13

DATE SAMPLED: 09/14/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/27/13

SAMPLE I.D.: **T918 (MW-3)** LAB I.D.: 130920-31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ŅD	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE RECEIVED: 09/20/13

DATE SAMPLED: 09/14/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/27/13

SAMPLE I.D.: **T918 (MW-3)**LAB I.D.: 130920-31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	0.006	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE RECEIVED: 09/20/13

DATE SAMPLED: 09/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/24/13

DATE REPORTED: 09/27/13

SAMPLE I.D.: T922 (MW-7) LAB I.D.: 130920-32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE SAMPLED: 09/17/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 09/20/13

DATE ANALYZED: 09/24/13

DATE REPORTED: 09/27/13

SAMPLE I.D.: **T922 (MW-7)**LAB I.D.: 130920-32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE RECEIVED: 09/20/13

DATE SAMPLED: 09/14&17/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 09/27/13

METHOD BLANK FOR LAB I.D.: 130920-31, -32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1.2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:____

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake GW Program 135335

MATRIX: SOIL

DATE SAMPLED: 09/14&17/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 09/20/13

DATE ANALYZED: 09/24/13

DATE REPORTED: 09/27/13

METHOD BLANK FOR LAB I.D.: 130920-31, -32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

PARAMETER UNIT: mg/kg = MI	LLIGRAM PER KILOG SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1.1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	<u>0.005</u>
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

9/24/2013

Matrix:

Solid/Soil/Liquid

Machine:

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Spiked Sample Lab I.D.:	
-------------------------	--

BATCH ID: 130920-32

ISpiked Sample Lab I.D.:		130920-32 1	112/18/12D				DATOTTE	. 100520-02	
Analyte	S.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.042	83%	0.050	99%	16%	75-125	0-20
Chlorobenzene	0	0.050	0.046	91%	0.054	108%	17%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.046	92%	0.055	110%	18%	75-125	0-20
Toluene	0	0.050	0.040	80%	0.048	96%	16%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.045	91%	0.054	107%	17%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.047	94%	75-125
Chlorobenzene	0.050	0.052	104%	75-125
Chloroform	0.050	0.060	120%	75-125
1,1-Dichlorothene	0.050	0.060	120%	75-125
Ethylbenzene	0.050	0.061	122%	75-125
o-Xylene	0.050	0.056	112%	75-125
m,p-Xylene	0.100	0.122	122%	75-125
Toluene	0.050	0.046	92%	75-125
1,1,1-Trichloroethane	0.050	0.058	116%	75-125
Trichloroethene (TCE)	0.050	0.052	104%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.		V V	M-BLK	130920-31	130920-32	130920-1	130920-2	130920-12	130923-35
Dibromofluoromethane	50.0	70-130	114%	126%	109%	130%	112%	127%	107%
Toluene-d8	50.0	70-130	92%	88%	94%	9次%	94%	98%	96%
4-Bromofluorobenzene	50.0	70-130	92%	77%	89%	88%	87%	96%	89%
			1					The state of the s	
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			130923-36	130923-37					
Dibromofluoromethane	50.0	70-130	113%	125%		1			
Toluene-d8	50.0	70-130	96%	94%					
4-Bromofluorobenzene	50.0	70-130	92%	90%				-	
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.								5	
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130							

^{* =} Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

Analyzed/Reviewed By:

Final Reviewer: _

Misc.	s Required comments	NW-3	L-WW						Sampler's Signature, Median Commence of the Co	Project Name/ID: OUCAS CALL GW	(55355)	ス / 中 (Instructions for Sample Storage After Analysis:	1435	O Other:	
ERATURE SOLS BY MOCS SOLS BY TRAIN SOLD BY TRAIN	TEMP		1// -	70					Project Contact: ePMUPS'S Fleinfe blocken Sampler's Signature,	Tel: 213 672 3706	23 6124954	Jaie & Ame. I	Jene 2 Ame: 13	Date & Time:	CIISTONY RECORD
Turnaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 72 Hours COOther:	SAMPLING DATE TIME MATE NO.	7105	1 JUS 0830 SOL 1	***							Fax:	Michelle Garde Receives 55	Received by:	Received by:	I C
Enviro-Chem, Inc. Laboratories 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-5907 (CA-DHS ELAP CERTIFICATE #1555	SAMPLEID	T918 (MW-2) 130920-31							Company Name:	Address: 235 W. 10th St. # 620	City/State/Zip: LOS ANGE (CS CA	Relinquished by: W. M. M. Chell	1	Relinauished bv:	

Date: 9/19/13

WHITE WITH SAMPLE · YELLOW TO CLIENT

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: October 8, 2013

Mr. Eric Philips Kleinfelder 523 West 6th Street, Suite 620 Los Angeles, CA 90014 Tel(213)622-3749 Email:Ephilips@kleinfelder.com

Project: Owens Lake Groundwater Program 135335

Lab I.D.: 131001-23, -24

Dear Mr. Philips:

The analytical results for the soil samples, received by our laboratory on October 1, 2013, are attached. The samples were received chilled, intact and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

curtis Desilets

Vice President/Program Manager

Andy Wang

Laboratory Manager

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 10/01/13

DATE EXTRACTED: 10/02/13

MATRIX: SOIL DATE ANALYZED: 10/02/13 DATE SAMPLED: 09/26&28/13

DATE REPORTED: 10/08/13 REPORT TO: Mr. ERIC PHILIPS ----------

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS

METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
T924 (MW-9)	131001-23	ND	ND	ND	1
T923 (MW-8)	131001-24	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	10	10	50	

COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by:_

CAL-DHS ELAP CERTIFICATE No.: 1555

Enviro Chem, Inc

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905 Fax (909)590-5907

8015B Soil/Solid QC

Date Analyzed:

10/2/2013

Units: mg/Kg (PPM)

Matrix:

Solid/Sludge

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

Batch I.D.: 131001-23

Spiked Sample Lab I.D.:

131001-23 MS/MSD

Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	220	110%	232	116%	5%	75-125	0-20%

LCS STD RECOVERY:

Final Reviewer:

Analyte	spk conc	LCS	% REC	ACP					
C11~C22 Range	200	236	118%	75-125					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		MB	131001-23	131001-24					
O-Terphenyl	60-140%	85%	79%	74%					
Octacosane	60-140%	101%	94%	76%					
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								
Surrogate Recovery	ACP%	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.									
O-Terphenyl	60-140%								
Octacosane	60-140%								

Analysis of and Daviewed Dy	13
Analyzed and Reviewed By:	

* = Surrogate fail due to matrix interference

Note: LCS, MS, MSD are in control therefore results are in control.

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE SAMPLED: 09/26/13

REPORT TO: Mr. ERIC PHILIPS

DATE RECEIVED: 10/01/13

DATE ANALYZED: 10/02/13

DATE REPORTED: 10/08/13

SAMPLE I.D.: T924 (MW-9)

LAB I.D.: 131001-23

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	2.77	0.3	1	500	5.0	6010B
Barium(Ba)	43.9	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	4.73	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	3.45	1.0	1	8,000	80	6010B
Copper(Cu)	4.89	1.0	1	2,500	25	6010B
Lead (Pb)	3.37	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	24.4	5.0	1	2,400	24	6010B
Zinc(Zn)	40.6	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal \underline{is} recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 10/01/13 MATRIX: SOIL DATE ANALYZED: 10/02/13 DATE SAMPLED: 09/28/13 DATE REPORTED: 10/08/13 REPORT TO:Mr. ERIC PHILIPS

LAB I.D.: 131001-24 SAMPLE I.D.: **T923(MW-8)**

> TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	2.08	0.3	1	500	5.0	6010B
Barium(Ba)	7.06	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total (Cr)	4.18	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt (Co)	1.34	1.0	1	8,000	80	6010B
Copper (Cu)	3.23	1.0	1	2,500	25	6010B
Lead (Pb)	1.12	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	8.38	5.0	1	2,400	24	6010B
Zinc(Zn)	8.93	0.5	1	5,000	250	6010E

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal \underline{is} recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 10/01/13

DATE SAMPLED: 09/26&28/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 10/08/13

METHOD BLANK FOR LAB I.D.: 131001-23, -24

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Beryllium (Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	1	500	5.0	7196A
Cobalt(Co)	ND	1.0	1	8,000	80	6010B
Copper(Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium (Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium (T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = PQL X DF

ND = Below the Actual Detection Limit or non-detected

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

@= Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5

* = STLC analysis for the metal is recommended (if marked)

** = Additional Analysis required, please call to discuss (if marked)

*** = The concentration exceeds the TTLC Limit, and the sample is

defined as hazardous waste as per CCR-TITLE 22 (if marked)

-- = Not analyzed/not requested

OA/OC for Metals Analysis -- TTLC--SOLID/SOIL MATRIX

Matrix Spike/ Matrix Spike Duplicate/ LCS:

ANAL	ANALYSIS DATE: 10/2/2013	10/2/2013							Unit	Unit : mg/Kg(ppm)	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec	% RPD
Arsenic(As)	131001-24	50.0	95	PASS	2.08	50.0	51.0	%86	52.1	100%	2%
Cadmium(Cd)	131001-24	50.0	103	PASS	0	50.0	52.3	105%	53.5	107%	2%
Lead(Pb)	131001-24	50.0	105	PASS	1.12	50.0	48.8	95%	50.2	%86	3%
ANAL	ANALYSIS DATE. : 10/2/2013	10/2/2013									
Analysis	Spk.Sample	CONC	LCS %Rec.	LCS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	131001-45	0.125	95	PASS	0	0.125	0.109	87%	0.101	81%	8%

MS/MSD Status:

_	Analysis	%WS	%MSD	%LCS	%RPD	
_	Arsenic(As)	PASS	PASS	PASS	PASS	
_	Cadmium(Cd)	PASS	PASS	PASS	PASS	
_	Lead(Pb)	PASS	PASS	PASS	PASS	
	Mercury (Hg)	PASS	PASS	PASS	PASS	
_	Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20	
۰						

Batch For Samples:131001-23,24

FINAL REVIEWER: ANALYST

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

DATE RECEIVED: 10/01/13 MATRIX: SOIL DATE ANALYZED: 10/01/13 DATE SAMPLED: 09/26/13 DATE REPORTED: 10/08/13 REPORT TO: Mr. ERIC PHILIPS

SAMPLE I.D.: **T924 (MW-9)**

LAB I.D.: 131001-23

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND CONTINUED ON PAGE #2	0.005

DATA REVIEWED AND APPROVED BY:

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 10/01/13

DATE SAMPLED: 09/26/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 10/08/13

SAMPLE I.D.: **T924 (MW-9)** LAB I.D.: 131001-23

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0,005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 10/01/13

DATE SAMPLED: 09/28/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 10/08/13

SAMPLE I.D.: **T923 (MW-8)** LAB I.D.: 131001-24

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:____

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email:Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL

DATE RECEIVED: 10/01/13

DATE SAMPLED: 09/28/13

REPORT TO: Mr. ERIC PHILIPS

DATE REPORTED: 10/08/13

SAMPLE I.D.: T923 (MW-8) LAB I.D.: 131001-24

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro - Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email:Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL
DATE SAMPLED: 09/26&28/13
REPORT TO: Mr. ERIC PHILIPS
DATE RECEIVED: 10/01/13
DATE ANALYZED: 10/01/13
DATE REPORTED: 10/08/13

METHOD BLANK FOR LAB I.D.: 131001-23, -24

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2
UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0,005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

---- TO BE CONTINUED ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:___

METHOD BLANK REPORT

CUSTOMER: Kleinfelder

523 West 6th Street, Suite 620

Los Angeles, CA 90014

Tel(213)622-3749 Email: Ephilips@kleinfelder.com

PROJECT: Owens Lake Groundwater Program 135335

MATRIX: SOIL DATE SAMPLED: 09/26&28/13 REPORT TO: Mr. ERIC PHILIPS DATE RECEIVED: 10/01/13 DATE ANALYZED: 10/01/13

DATE REPORTED: 10/08/13

METHOD BLANK FOR LAB I.D.: 131001-23, -24

...............

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1,3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro-Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766

Tel (909)590-5905

Fax (909)590-5907

8260B QA/QC Report

Date Analyzed:

Machine:

10/1-2/2013

Matrix:

Solid/Soil/Liquid

Unit:

mg/Kg (PPM)

Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

BATCH ID: 131001-LCS1/2

Spiked Sample Lab I.D.:	131001-LC31/2				BATOTTIB: TOTOGT ECONE				
Analyte	S.R.	spk conc]	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.048	96%	0.045	90%	6%	75-125	0-20
Chlorobenzene	0	0.050	0.044	88%	0.042	84%	4%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.058	116%	0.055	110%	6%	75-125	0-20
Toluene	0	0.050	0.049	98%	0.046	92%	6%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.042	84%	0.040	80%	4%	75-125	0-20

Lab Control Spike (LCS):

Analyte	spk conc	LCS	%RC	ACP %RC
Benzene	0.050	0.051	102%	75-125
Chlorobenzene	0.050	0.044	88%	75-125
Chloroform	0.050	0.041	82%	75-125
1,1-Dichlorothene	0.050	0.054	108%	75-125
Ethylbenzene	0.050	0.044	88%	75-125
o-Xylene	0.050	0.048	96%	75-125
m,p-Xylene	0.100	0.089	89%	75-125
Toluene	0.050	0.051	102%	75-125
1,1,1-Trichloroethane	0.050	0.045	90%	75-125
Trichloroethene (TCE)	0.050	0.044	88%	75-125

Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	131001-6	131001-8	131001-18	131001-19	131001-17	131001-23
Dibromofluoromethane	50.0	70-130	88%	98%	104%	90%	98%	89%	97%
Toluene-d8	50.0	70-130	108%	107%	108%	108%	107%	102%	107%
4-Bromofluorobenzene	50.0	70-130	103%	106%	103%	104%	106%	103%	112%
Surrogate Recovery	spk conc	ACP %RC	%RC \	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			131001-24						
Dibromofluoromethane	50.0	70-130	90%						
Toluene-d8	50.0	70-130	105%						
4-Bromofluorobenzene	50.0	70-130	106%						
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.									
Dibromofluoromethane	50.0	70-130							
Toluene-d8	50.0	70-130							
4-Bromofluorobenzene	50.0	70-130						C I	

* = Surrogate fail due to matrix interference;	LCS, MS, MSD are in control therefore the analysis is in control.
--	---

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

%RC = Percent Recovery

ACP %RC = Accepted Percent Recovery

MSD = Matrix Spike Duplicate

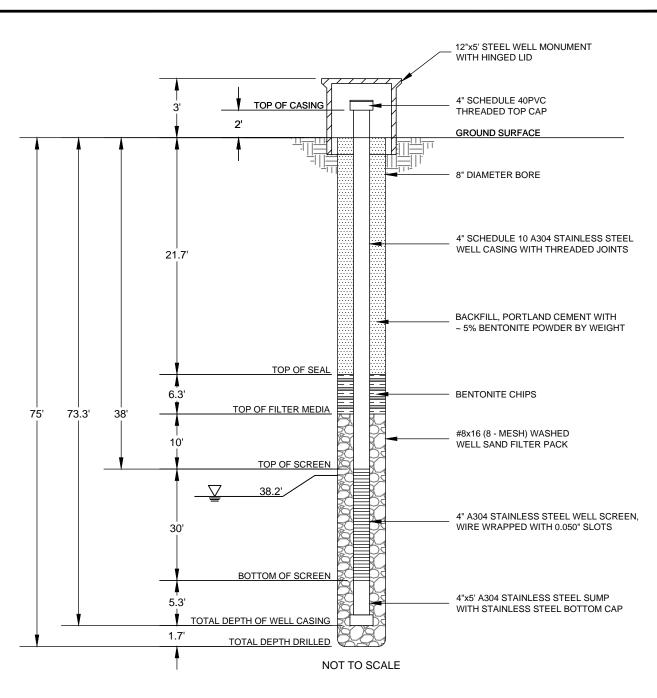
Analyzed/Reviewed By:

Final Reviewer:

Ostore (30 Days) Instructions for Sample Storage After Analysis: COMMENTS Groundwith Program Miw-9 MW-8 Misc. Dispose of O Return to Client Project Name/ID: Oceas which Sampler's Signature: 135335 **Analysis Required** O Other: 1420 Date & Time: Date & Time: ephilips @ Kleinfelder , com 4954 Project Contact: Ent Philips 7015 -622-3706 213-612-**PRESERVATION TEMPERATURE** Fax: No. OF CONTAINERS Soil 500/ **XINTAM** Received by: Received by: Received by: SAMPLING DATE TIME **Turnaround Time** 0 72 Hours 0 1 Week (Standard) Other 9/26/13 15:15 139/13 15:00 0 Same Day 0 24 Hours 0 48 Hours Cook # 620 Michael Enviro-Chem, Inc. Laboratories Tel: (909) 590-5905 Fax: (909) 590-5907 LAB ID **CA-DHS ELAP CERTIFICATE #1555** City/State/Zip: Los Angeles, CA 1214 E. Lexington Avenue, Address: 235 W 6# St, Relinquished by: Muhaul Cody Pomona, CA 91766 100-8 6-MW Kleinfelder SAMPLEID Company Name: Relinquished by: Refinquished by: 126

CHAIN OF CUSTODY RECORD

Page / of /


WHITE WITH SAMPLE - YELLOW TO CLIENT

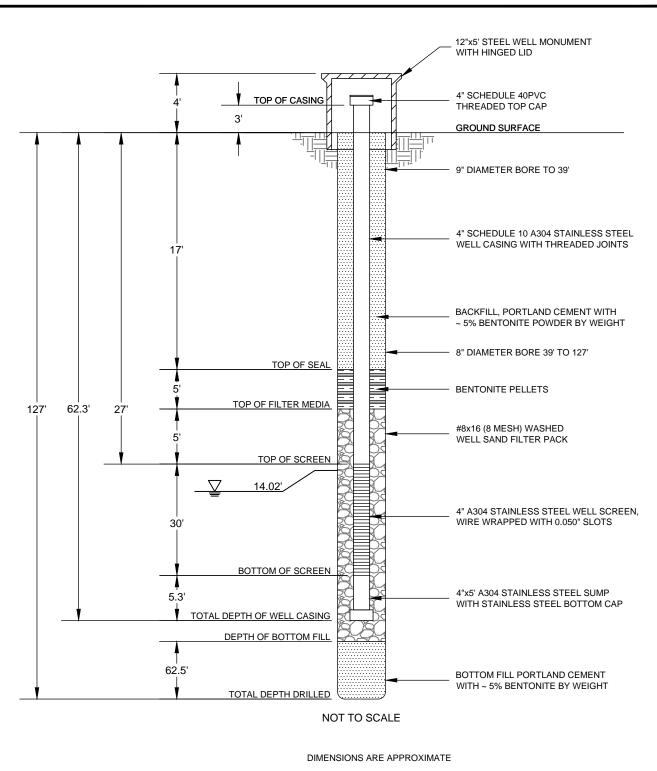
Date:

APPENDIX D

Well Construction Diagrams

NOTE: DIMENSIONS ARE APPROXIMATE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.


PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

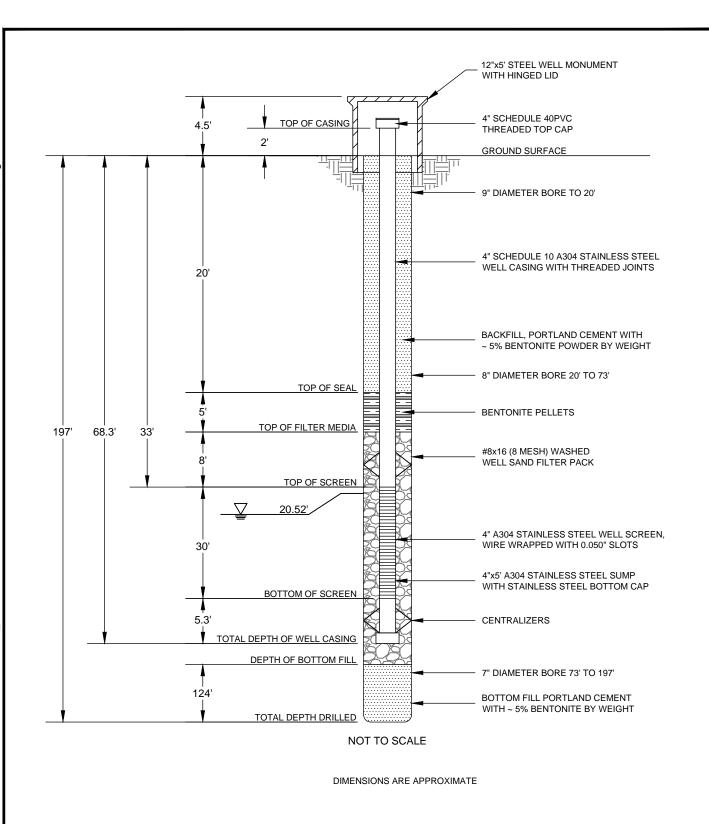
WELL CONSTRUCTION DIAGRAM MW-1 (T-930)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

D-1

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.


PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

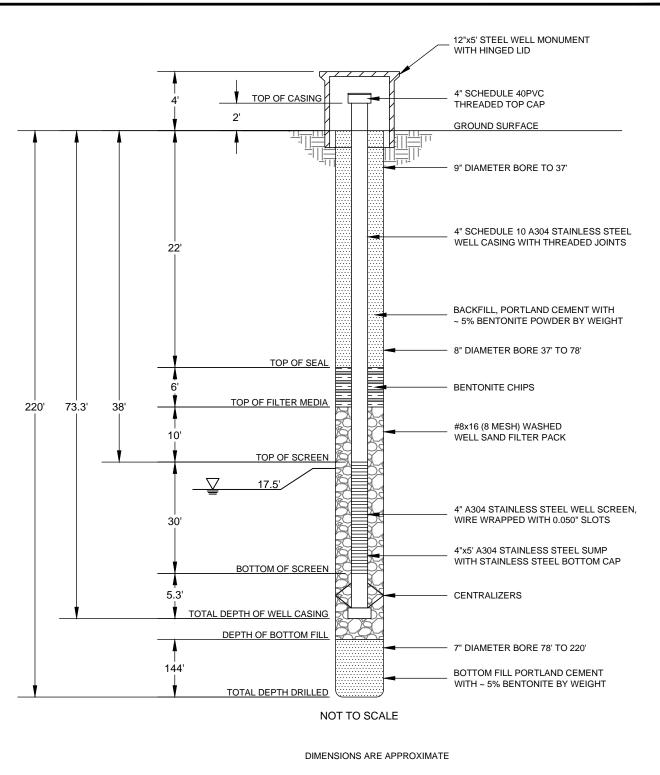
WELL CONSTRUCTION DIAGRAM MW-2 (T-931)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

D-2

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

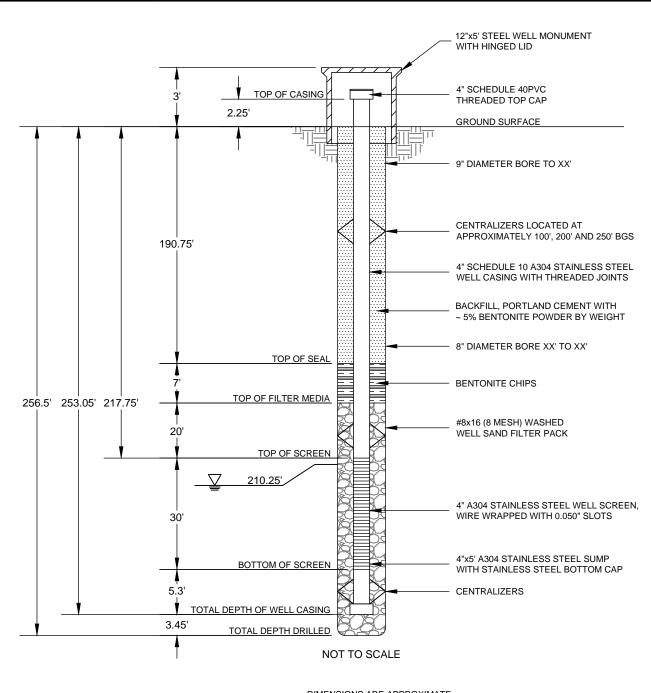

PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-3 (T-918)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

D-3



PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

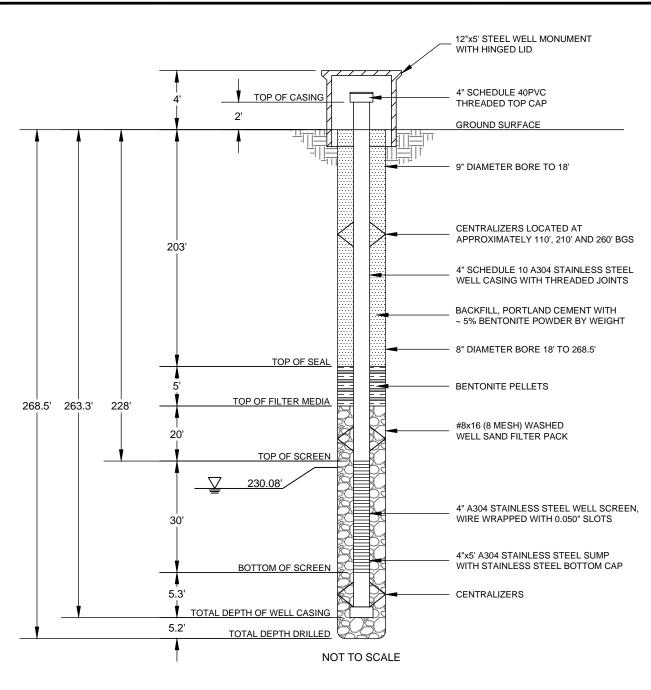
WELL CONSTRUCTION DIAGRAM MW-4 (T-919)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

DIMENSIONS ARE APPROXIMATE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.



PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14_	WCD.dwg

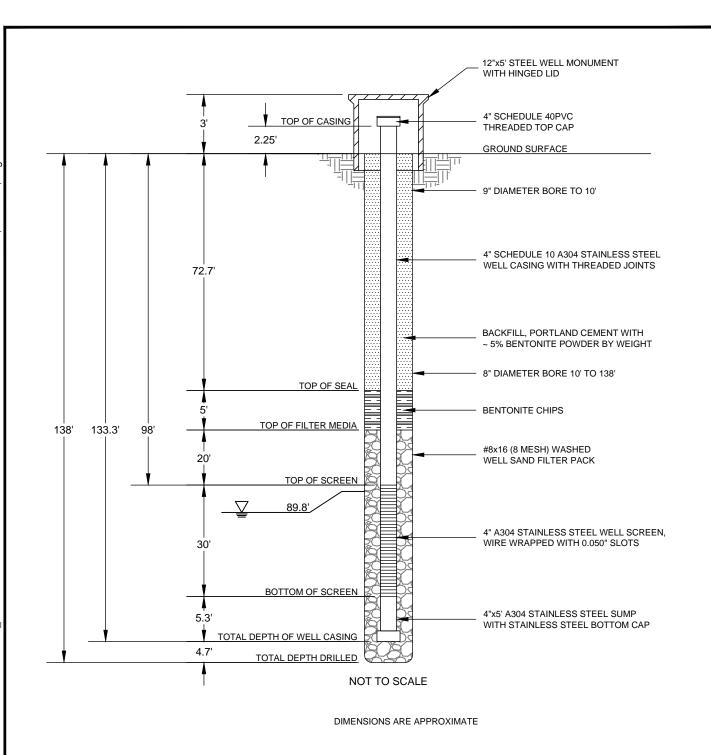
WELL CONSTRUCTION DIAGRAM MW-5 (T-920)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

DIMENSIONS ARE APPROXIMATE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

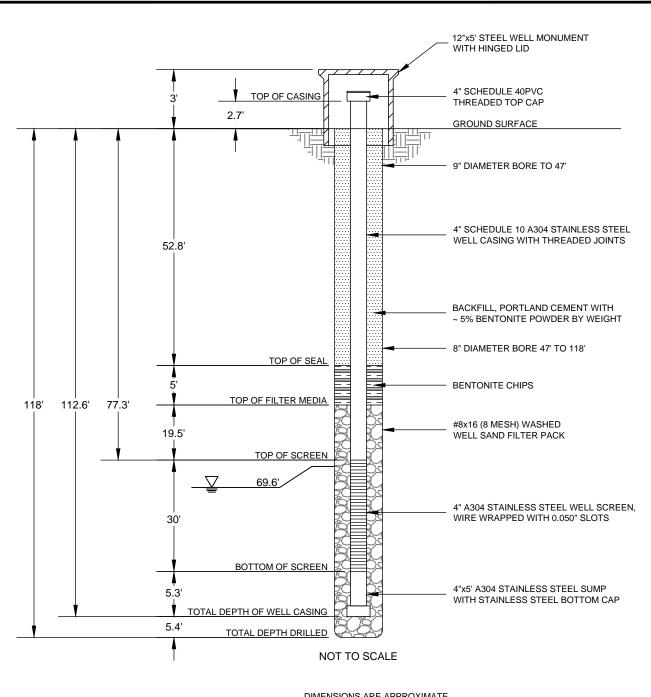


	PROJECT NO.	135335
	DRAWN:	12/2013
!	DRAWN BY:	MRG
	CHECKED BY:	DH
	FILE NAME:	
	135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-6 (T-921)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE



PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

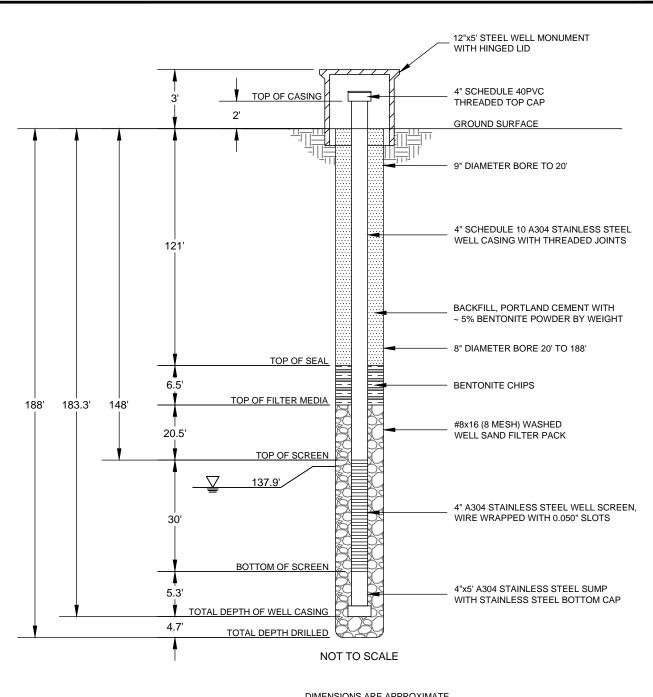
WELL CONSTRUCTION DIAGRAM MW-7 (T-922)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

DIMENSIONS ARE APPROXIMATE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.



l	PROJECT NO.	135335
L	DRAWN:	12/2013
L	DRAWN BY:	MRG
L	CHECKED BY:	DH
I	FILE NAME:	
l	135335pD-1toD-14	_WCD.dwg

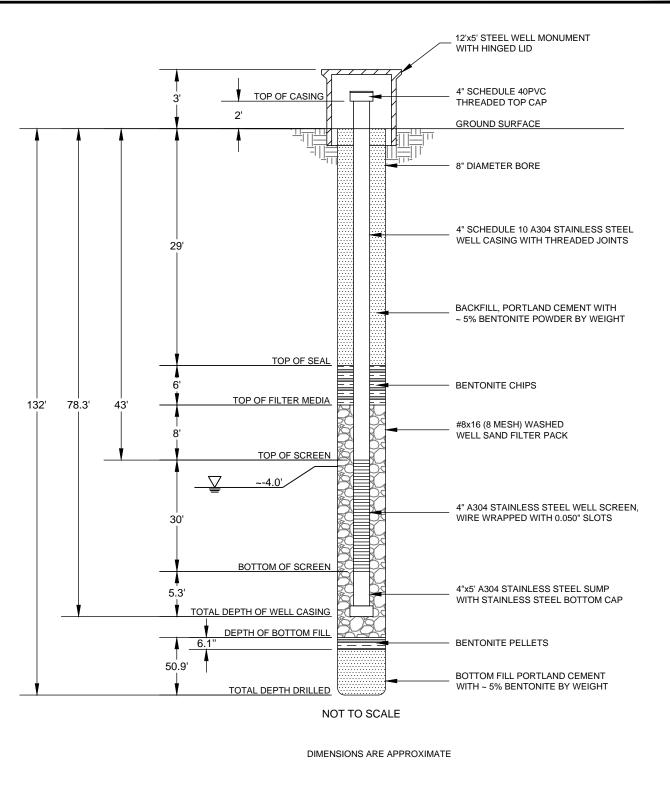
WELL CONSTRUCTION DIAGRAM MW-8 (T-923)

> **AGREEMENT 47805 TO-19** OWNES LAKE GROUNDWATER **DEVELOPMENT PROGRAM** OWENS LAKE, CALIFORNIA

PLATE

DIMENSIONS ARE APPROXIMATE

The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Kleinfelder makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. This document is not intended for use as a land survey product nor is it designed or intended as a construction design document. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

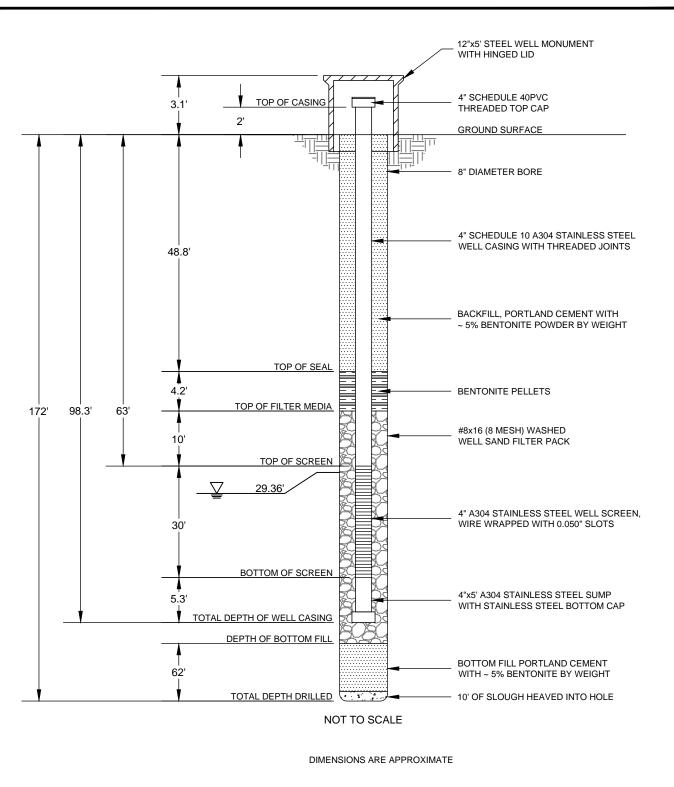


PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-9 (T-924)

> **AGREEMENT 47805 TO-19** OWNES LAKE GROUNDWATER **DEVELOPMENT PROGRAM** OWENS LAKE, CALIFORNIA

PLATE

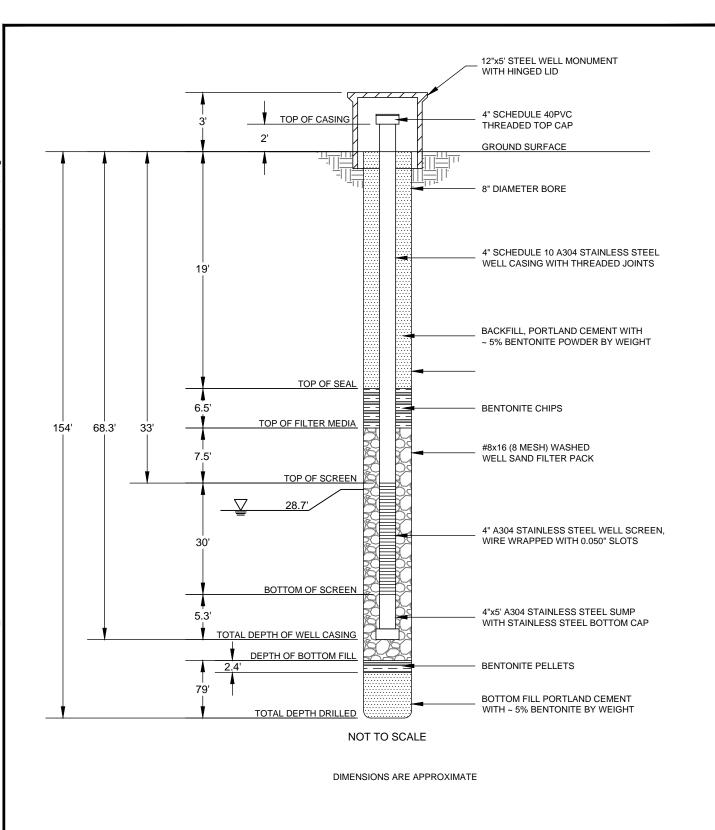


l	PROJECT NO.	135335
L	DRAWN:	12/2013
L	DRAWN BY:	MRG
L	CHECKED BY:	DH
I	FILE NAME:	
l	135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-10 (T-925)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

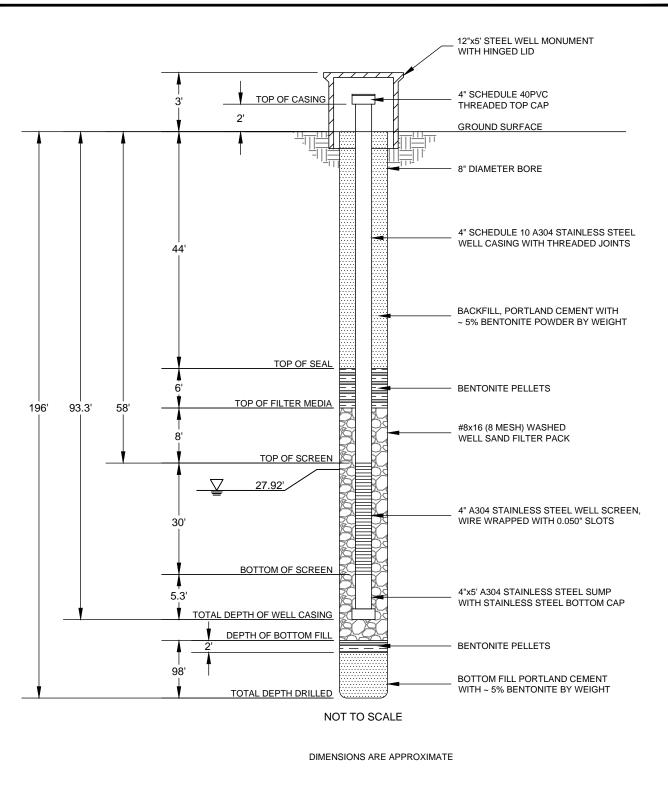


PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-11 (T-926)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

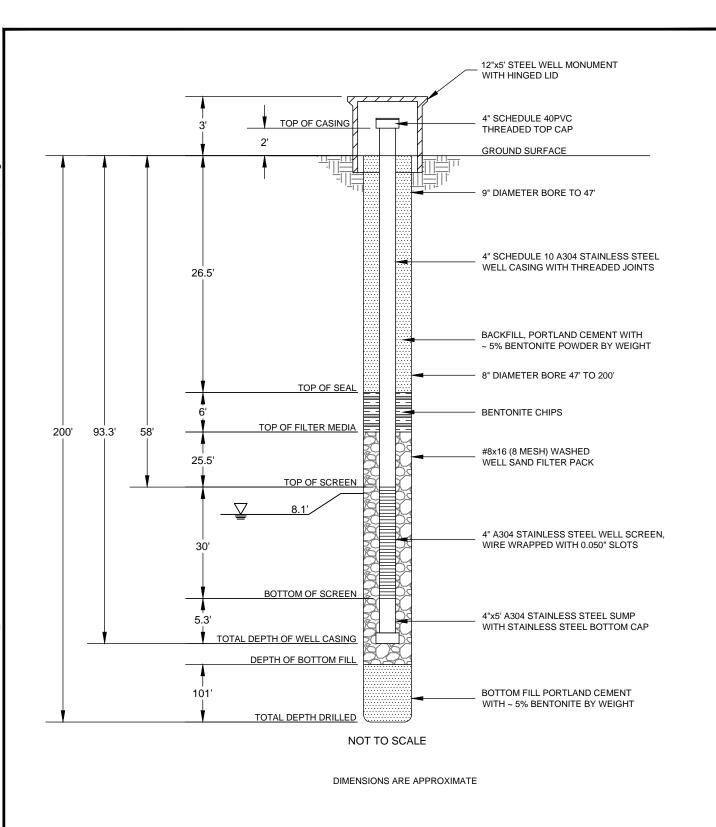


PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-12 (T-927)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE



PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

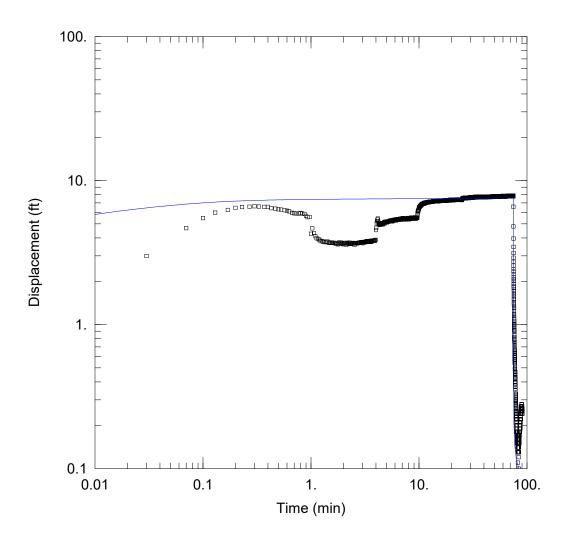
WELL CONSTRUCTION DIAGRAM MW-13 (T-928)

> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

PROJECT NO.	135335
DRAWN:	12/2013
DRAWN BY:	MRG
CHECKED BY:	DH
FILE NAME:	
135335pD-1toD-14	_WCD.dwg

WELL CONSTRUCTION DIAGRAM MW-14 (T-929)


> AGREEMENT 47805 TO-19 OWNES LAKE GROUNDWATER DEVELOPMENT PROGRAM OWENS LAKE, CALIFORNIA

PLATE

APPENDIX E

Pumping Test Results

Data Set: C:\...\T-920_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:30:43

PROJECT INFORMATION

Company: Kleinfelder Client: LADWP

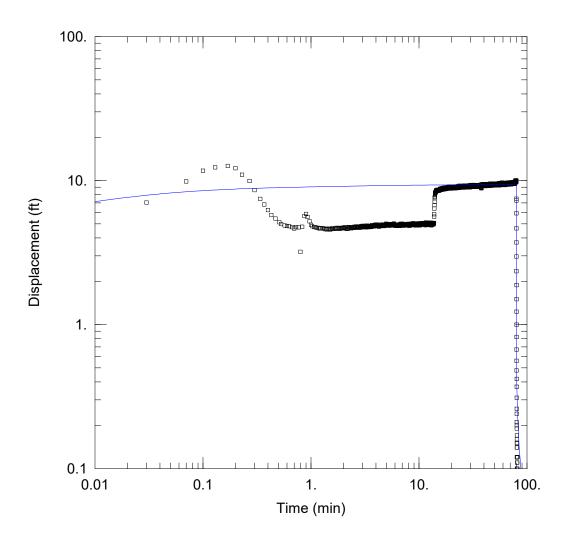
Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-5 / T-920 Test Date: 10/3/2013

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA

Pumping Wells			Observation Wells			
Well Name X (ft) Y (ft)		Well Name	X (ft)	Y (ft)		
	MW-5 / T-920	0	0	□ MW-5 / T-920	0	0


SOLUTION

Aquifer Model: Unconfined

Solution Method: Tartakovsky-Neuman $= 3113.3 \text{ ft}^2/\text{day}$ = 0.000119

Sy = 0.2 $= \overline{1.3}34$ kĎ

Kz/Kr = 0.1

Data Set: C:\...\T-922_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:31:46

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-7 / T-922 Test Date: 10/4/2013

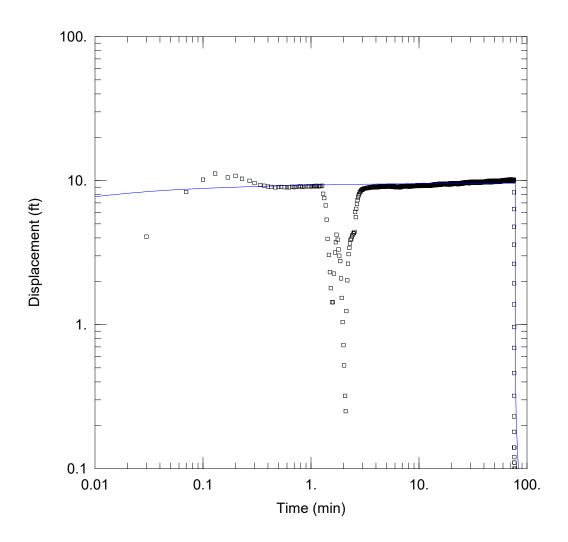
AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 0.5188

WELL DATA

Pumpi	ing Wells		Observation Wells					
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)			
MW-7 / T-922	0	0	□ MW-7 / T-922	0	0			

SOLUTION


Aquifer Model: <u>Unconfined</u>

 $T = 1490.1 \text{ ft}^2/\text{day}$

Sy = $\frac{0.05}{2.661E-5}$

Solution Method: <u>Tartakovsky-Neuman</u>

 $S = \frac{0.000119}{0.5188}$

Data Set: C:\...\T-923_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:32:40

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

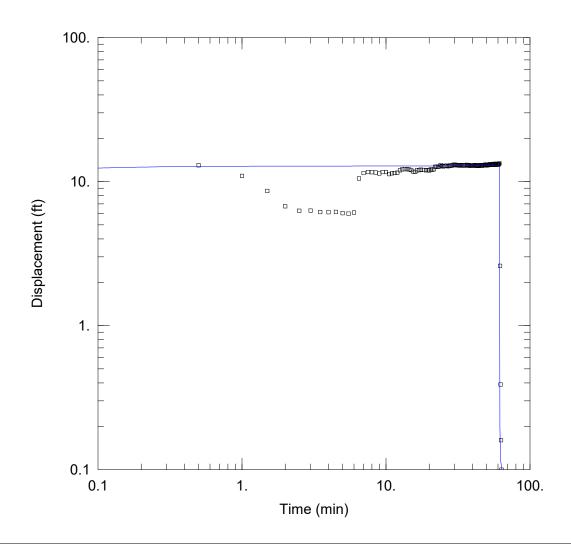
Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-8 / T-923 Test Date: 10/4/2013

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pump	ing Wells		Observ	ation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-8 / T-923	0	0	□ MW-8 / T-923	0	0


SOLUTION

Aquifer Model: Unconfined

Solution Method: Tartakovsky-Neuman $= 1791.5 \text{ ft}^2/\text{day}$ = 0.000119

Sy = 0.2

kĎ $= \overline{0.0}002985$ Kz/Kr = 1.

Data Set: C:\...\T-924_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:33:58

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

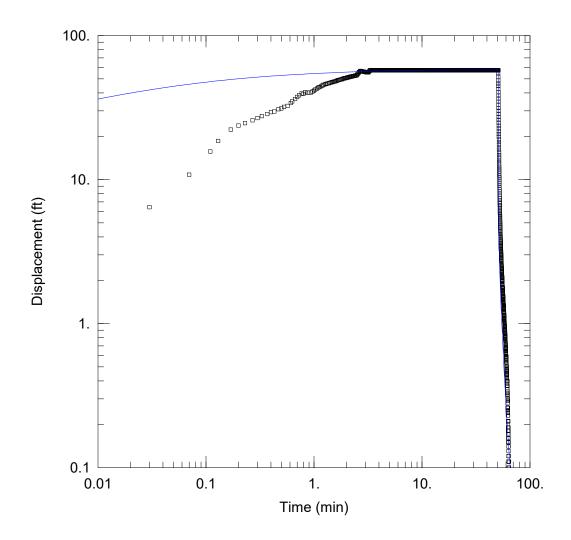
Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-9 / T-924 Test Date: 10/1/2013

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumpi	ing Wells		Observa	ation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-9 / T-924	0	0	□ MW-9 / T-924	0	0


SOLUTION

Aquifer Model: Unconfined

Solution Method: Tartakovsky-Neuman

 $= 879.2 \text{ ft}^2/\text{day}$ = 0.000119Sy = 0.2Kz/Kr = 1.

kĎ $= \overline{100}$.

Data Set: C:\...\T-925_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:29:40

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

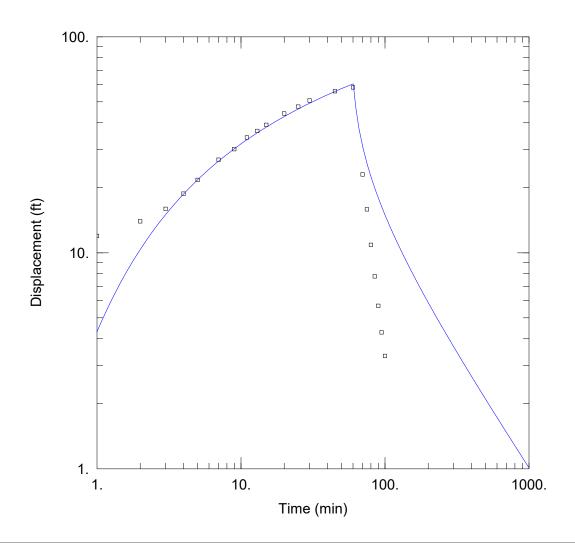
Project: <u>135335/003.2</u> Location: <u>Owens Lake, CA</u> Test Well: <u>MW-10 / T-925</u> Test Date: <u>10/4/2013</u>

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 0.26

WELL DATA

Pumpi	ng Wells		Observa	tion Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-10 / T-925	0	0	□ MW-10 / T-925	0	0


SOLUTION

Aquifer Model: Unconfined

T = 436.2 ft 2 /day

Sy = 0.2kD = 17.78 Solution Method: <u>Tartakovsky-Neuman</u>

 $S = \frac{0.000119}{0.26}$ Kz/Kr = $\frac{0.26}{0.26}$

Data Set: C:\...\T-926_TN.aqt

Date: 12/09/13 Time: 15:38:41

PROJECT INFORMATION

Company: Kleinfelder

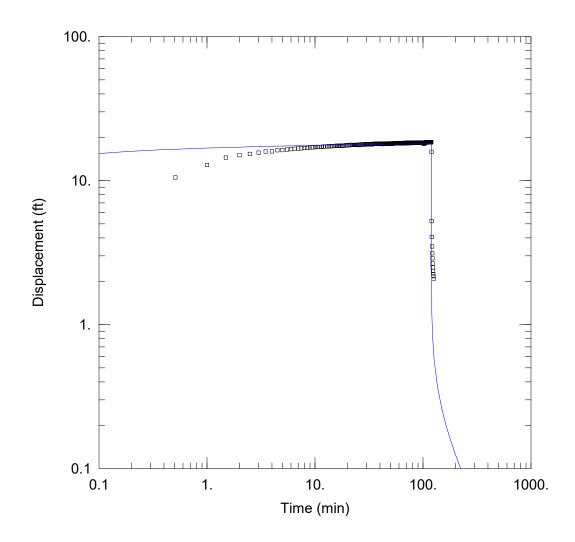
Client: LADWP

Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-11 / T-926 Test Date: 10/3/2013

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 0.01084

WELL DATA


F	Pumping Wells		Observa	tion Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-11 / T-926	0	0	□ MW-11 / T-926	0	0

SOLUTION

Aquifer Model: Unconfined

Solution Method: <u>Tartakovsky-Neuman</u>

T = $\frac{9.155}{\text{Sy}}$ ft²/day S = $\frac{0.2076}{0.01084}$ kD = $\frac{66.83}{0.01084}$

Data Set: C:\...\T-927_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:40:36

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-12 / T-927 Test Date: 10/2/2013

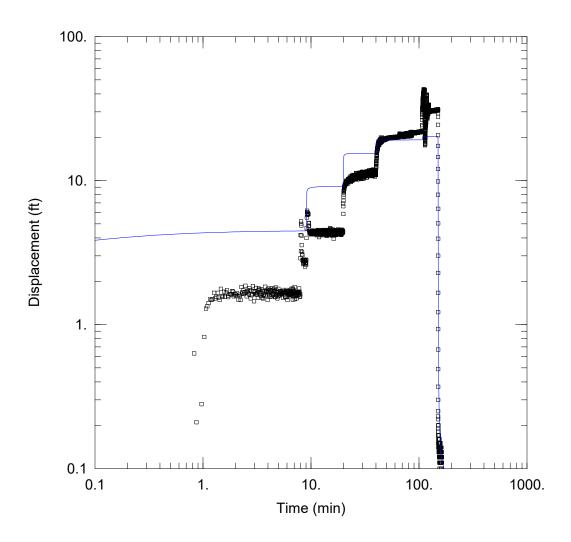
AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumpi	ng Wells		Observa	tion Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-12 / T-927	0	0	□ MW-12 / T-927	0	0

SOLUTION


Aquifer Model: Unconfined

Solution Method: <u>Tartakovsky-Neuman</u>

T = <u>2421.9</u> ft²/day

S = 0.0009034Kz/Kr = 1.

Sy = 0.2kD = 0.05309

Data Set: C:\...\T-928_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:42:55

PROJECT INFORMATION

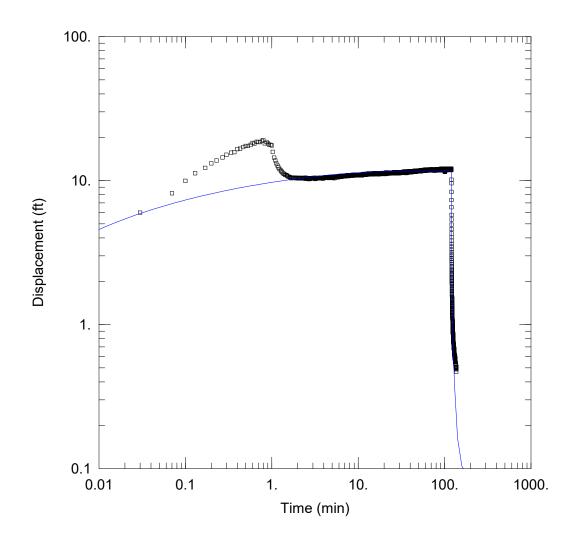
Company: Kleinfelder

Client: LADWP

Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-13 / T-928 Test Date: 10/2/2013

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 0.537


WELL DATA

Pumpi	ing Wells		Observa	tion Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-13 / T-928	0	0	□ MW-13 / T-928	0	0

SOLUTION

Aquifer Model: Unconfined Solution Method: Tartakovsky-Neuman

 $= 1504.9 \text{ ft}^2/\text{day}$ = 0.0005135 Sy = 0.2Kz/Kr = 0.537 $=\overline{17.78}$ kĎ

Data Set: C:\...\T-931_Tartakovsky-Neuman.aqt

Date: 12/09/13 Time: 15:45:01

PROJECT INFORMATION

Company: Kleinfelder

Client: LADWP

Project: 135335/003.2 Location: Owens Lake, CA Test Well: MW-2 / T-931 Test Date: 10/3/2013

AQUIFER DATA

Saturated Thickness: 50.73 ft Anisotropy Ratio (Kz/Kr): 0.5012

WELL DATA

Pump	ing Wells		Observ	ation Wells	
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
MW-2 / T-931	0	0	□ MW-2 / T-931	0	0

SOLUTION

Aquifer Model: Unconfined Solution Method: Tartakovsky-Neuman

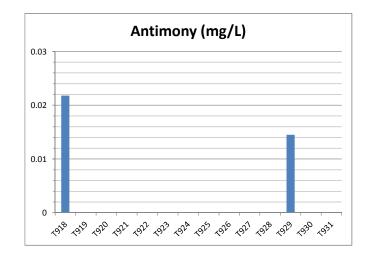
 $= 731.3 \text{ ft}^2/\text{day}$ = 0.002869Sy = 0.2Kz/Kr = 0.5012kĎ $= \overline{77.69}$

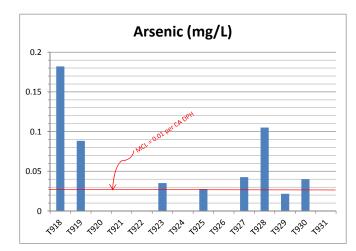
APPENDIX F Water Quality Results

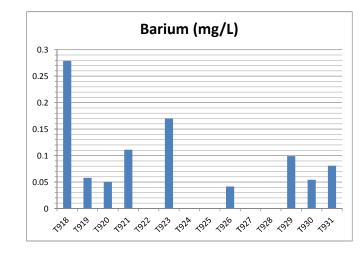
MCL - Maximum Contaminant Level

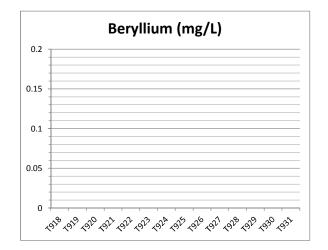
PHG - Public Health Goal

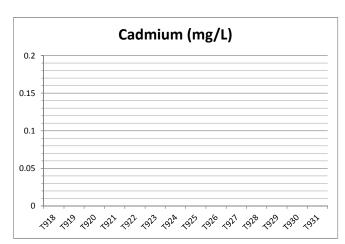
May 2013 Secondary EPA MCLs

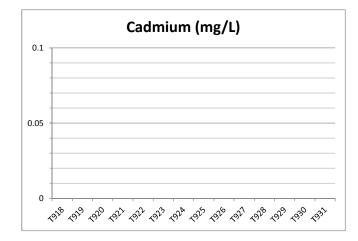

http://water.epa.gov/drink/contaminants/secondarystandards.cfm

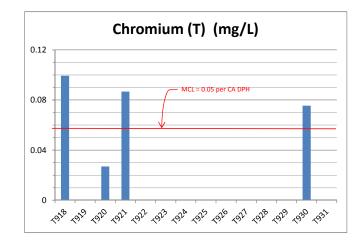

Water Quality Results for 14 Owens Lake Monitoring Wells

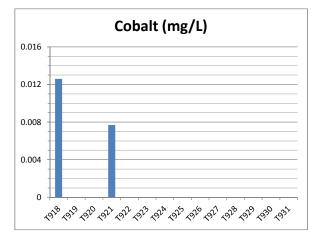

			Well Number														Ī			
	Method	Analysis Requested	T918	T919	T920	T921	T922	T923	T924	T925	T926	T927	T928	Т929	Т930	T931	MCL (mg/L)	PHG (mg/L)	Secondary MCL (mg/L)	Noticeable Effects above the secondary MCL
f	EPA 300.0	Nitrite-N (mg/L)	< 0.03	< 0.03	1.34	0.44	0.43	< 0.03	0.19	0.02	< 0.03	< 0.03	< 0.03	0.23	0.31	< 0.03	1	1		
Ī	EPA 300.0	Chloride (mg/L)	2080	228	5.07	25.1	8.84	577	5.39	34.3	20.8	1727	232	77	18.3	16.0			250	
Ī	EPA 300.0	Phosphate (mg/L)	0.69	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1				
Ī	EPA 300.0	Sulfate (mg/L)	141	151	6.86	30.6	9.12	275	46.1	43.8	15.4	806	416	14.9	57.2	51.5				
Ī																				hardness; deposits; colored water;
	SM 2540 C	TDS (mg/L)	6250	1603	154	290	125	2858	257	227	246	4490	1213	646	456	453			500	staining; salty taste
	SM 4500 NH3 G	Ammonia-N (mg/L)	67.7	2.45	< 0.2	0.42	< 0.2	2.13	< 0.2	< 0.2	< 0.2	0.30	< 0.2	5.69	< 0.2	3.44				
	SM 2320 B	Alkalinity (mg/L)	2468	912	80	188	74	1198	126	58	152	172	230	410	254	310				
	SM 2320 B	Carbonate (mg/L)	2320	92	0	88	0	0	0	20	0	0	104	0	0	0				
	SM 5310 C	TOC (mg/L)	37	2.9	< 0.4	2.6	< 0.4	1.8	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.79	0.77	2.5				
																				low pH: bitter metallic taste; corrosion
	SM 4500 H+B	рН	10.65	12.0	7.43	11.03	7.44	6.81	7.39	9.12	7.72	6.95	8.75	7.75	7.5	7.08			6.5 - 8.5	high pH: slippery feel; soda taste; deposits
Ī	EPA 120.1	Specific Conductivity (us/cm)	10350	5050	204	732	202	4570	367	170	390	7010	2070	1120	710	790				
Ī	EPA 180.1	Turbidity (ntu)	938	32.2	35.7	284	3.74	98.3	< 1	< 1	13.4	4.42	2.14	2.14	208	9.52				
	EPA 200.7	Boron (mg/L)	25.5	3.93	< 0.009	0.105	< 0.009	21.0	0.05	0.055	0.432	22.8	8.46	1.75	0.088	0.309				
	EPA 200.7	Lithium (mg/L)	0.319	0.124	0.025	0.057	0.043	0.849	0.053	0.149	0.030	0.752	0.319	0.779	0.061	0.060				
	EPA 200.7	Magnesium (mg/L)	29.1	0.365	3.93	6.8	6.44	34.0	2.98	10.2	7.31	27.1	4.08	48.8	13.1	18.1				
																				black to brown color; black staining; bitter
	EPA 200.7	Manganese (mg/L)	0.893	0.028	0.378	0.484	0.146	0.874	0.165	0.937	0.115	0.151	0.398	0.129	0.363	0.586			0.05	metallic taste
	EPA 200.7	Sodium (mg/L)	3690	585	14.7	63.1	9.09	957	47.8	17.0	39.5	1790	488	106	86.5	75.7				
	EPA 200.7	Antimony (mg/L)	0.0218	ND	ND	ND	0.00580J	ND	0.00610J	ND	ND	ND	ND	0.0145	0.007001	0.00700J	-	0.0007		
	EPA 200.7	Arsenic (mg/L)	0.182	0.0883	ND	0.0238J	ND	0.0351	0.00730J	0.0277	0.00951	0.0426	0.105	0.0217	0.0399	ND	0.01	0.000004		
	EPA 200.7	Barium (mg/L)	0.279	0.0579	0.0503	0.111	0.0149J	0.170	0.0172J	0.00760J	0.0415	ND	0.0214J	0.099	0.0541	0.0808	1	2		
	EPA 200.7	Beryllium (mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004	0.001		
	EPA 200.7	Cadmium (mg/L)	0.00270J	ND	ND	0.00180J	ND	ND	ND	ND	ND	ND	ND	ND	0.00140J	ND	0.005	0.001		
	EPA 200.7	Chromium (T) (mg/L)	0.0993	0.0072J	0.0269	0.0867	0.0145J	0.007701	0.00730J	0.00780J	0.0174J	0.000610J	ND	0.0120J	0.0754	ND	0.05	-		
	EPA 200.7	Cobalt (mg/L)	0.0126	ND	ND	0.00770	ND	ND	ND	ND	ND	ND	ND	ND	0.003501	ND				
<u>s</u>	EPA 200.7	Copper (mg/L)	0.0332J	ND	ND	0.0182J	ND	ND	ND	ND	ND	ND	ND	0.0110J	ND	ND	1.3*	0.3	1.0	
Metals	EPA 200.7	Lead (mg/L)	0.0554	0.009001	0.0113J	0.0233	ND	0.00780J	0.00710J	ND	ND	0.00690J	0.00600J	0.0134J	0.0172J	0.0115J	0.015*	0.0002		
Σ	EPA 200.7	Molybdenum (mg/L)	0.133	0.0349	0.0199	0.0496	0.0189	0.0760	0.0333	0.00450J	0.0220	0.0684	0.0147	0.0047J	0.0741	0.00810				
	EPA 200.7	Nickel (mg/L)	0.0598	0.0149J	ND	0.0428J	ND	0.0178J	ND	ND	ND	0.0374J	ND	ND	0.0401J	ND				
	EPA 200.7	Selenium (mg/L)	0.0304J	0.0210J	0.0126J	0.0145J	ND	0.0197J	0.0274J	ND	ND	ND	ND	0.0201J	ND	ND	0.05	0.03		
																				skin discoloration; graying of the white
	EPA 200.7	Silver (mg/L)	ND	ND	ND	ND	ND	ND	0.004001	ND	0.006001	0.00620J	ND	ND	ND	ND			0.1	part of eye
	EPA 200.7	Thallium (mg/L)	ND	0.00480J	ND	0.00420J	0.00610J	ND	ND	ND	0.0092J	ND	0.00700J	0.0106J	ND	0.006601	0.002	0.0001		
	EPA 200.7	Vanadium (mg/L)	0.429	ND	ND	0.0811	ND	ND	ND	ND	ND	ND	ND	ND	0.0206J	ND				
	EPA 200.7	Zinc (mg/L)	0.166	0.0535	0.0114	0.468	0.205	0.313	0.252	0.501	0.105	0.116	0.0268	0.0777	0.491	0.108			5	metallic taste

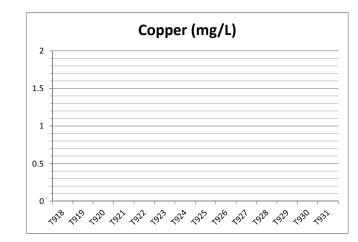

 $[\]mbox{\ensuremath{^{\ast}}}$ They are called "Action Levels" under the lead and copper rule (not actually MCLs).

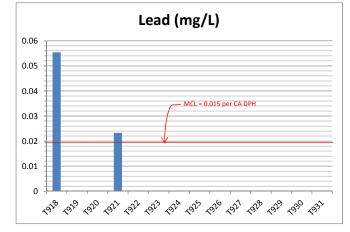

METALS

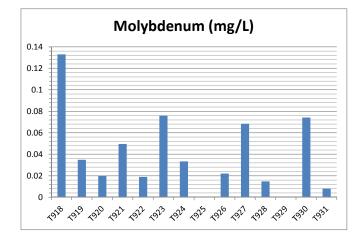


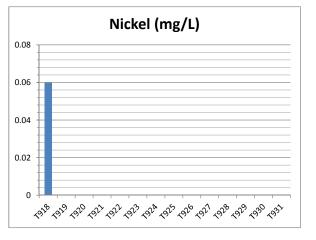


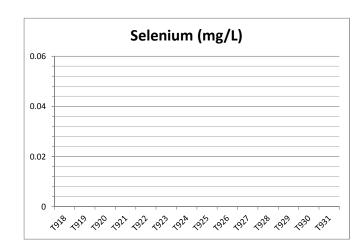


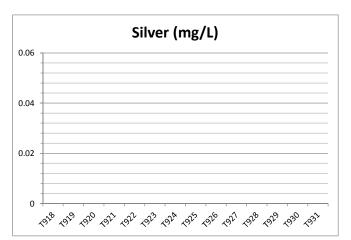


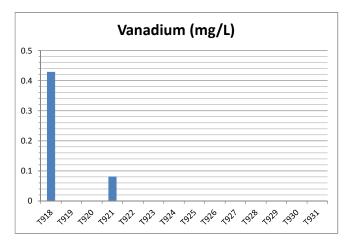


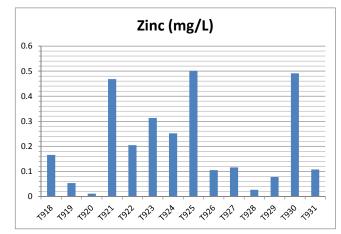


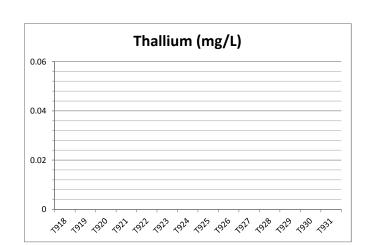


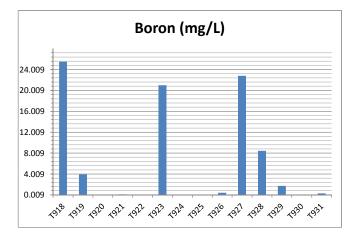


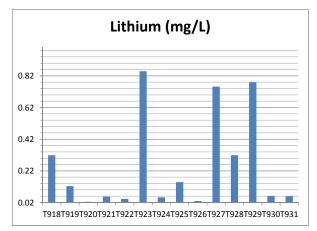


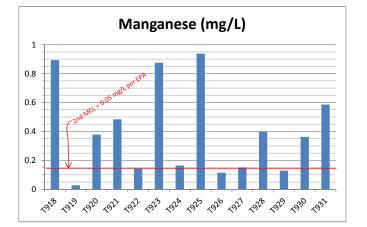


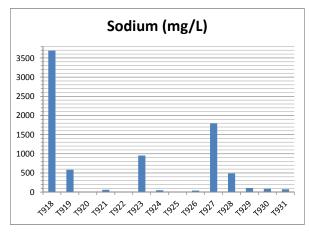


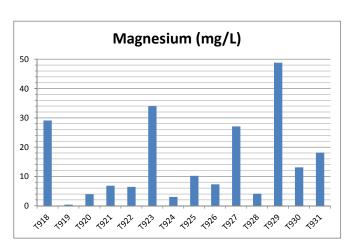

METALS GENERAL CHEMISTRY

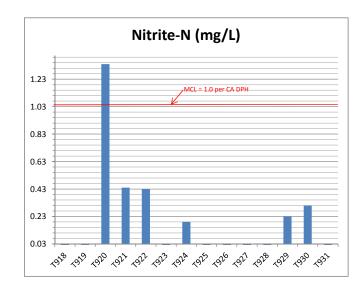


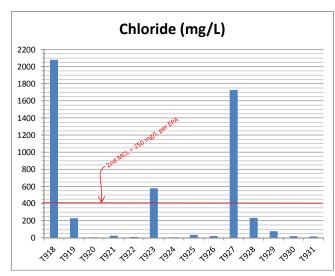


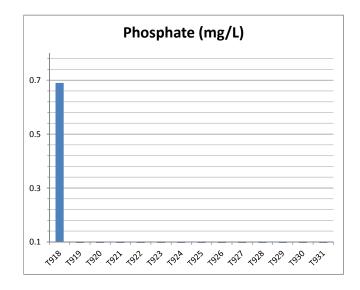


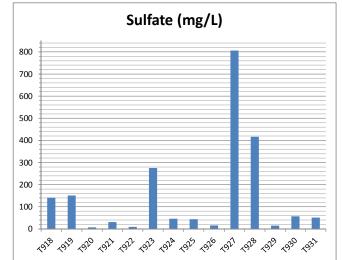


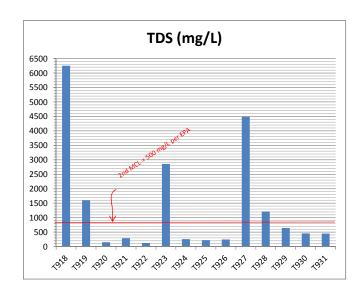


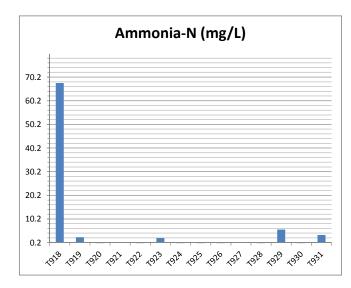


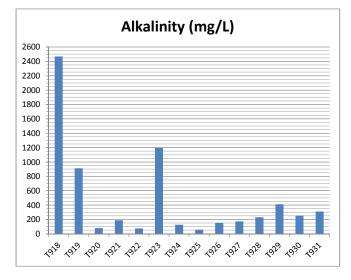


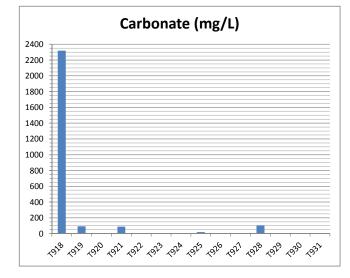


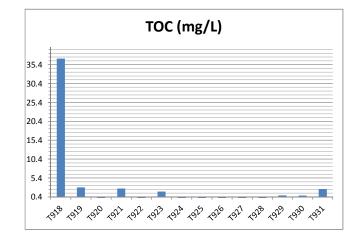


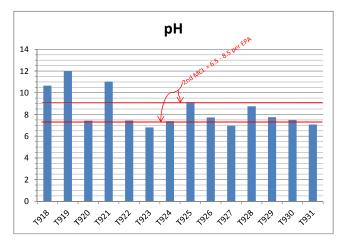

GENERAL CHEMISTRY

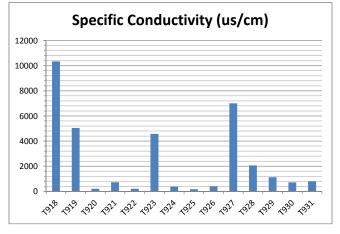


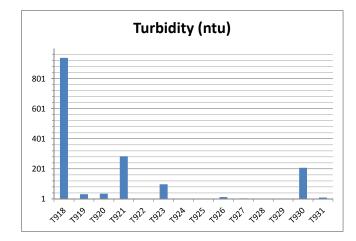












DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12182

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

EPA METHOD 200.7

DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12182 COC 13-2479 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T924 were submitted to the Environmental Laboratory on October 2, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97 Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By: ___

<u>VP</u> Date: <u>10/28/2013</u>

Checked by: Date:

Date: 16/19/13

APPROVED BY:

Interim Laboratory Manager Environmental Laboratory

100001

DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12182 COC 13-2479 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	$0.050~\mathrm{mg/L}$	
LN11725	Well# T924	Lithium	EPA 200.7	10/24/13	0.053 mg/L	Environmental Lab
Zivii/Zi	Will ISE	Magnesium		10/24/13	2.98 mg/L	
		Manganese		10/24/13	0.165 mg/L	
		Sodium		10/24/13	47.8 mg/L	
		Nitrite –N			0.19 mg/L	
T N111707	W-11# T004	Chloride	EDA 200 0	10/0/12	5.39 mg/L	
LN11726	Well# T924	Phosphate	EPA 300.0	10/2/13	<0.1 mg/L	Environmental Lab
		Sulfate		·	46.1 mg/L	
LN11727	Well# T924	TDS	SM 2540 C	10/4/13	257 mg/L	Environmental Lab
LN11728	Well# T924	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards
LN11729	Well# T924	Alkalinity	SM 2320 B	10/10/13	126 mg/L	Environmental Lab
LN11/29	Well# 1924	Carbonate	SWI 2320 B	10/10/13	0 mg/L	Environmental Lao
LN11730	Well# T924	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab
		pH	SM 4500 H+B	10/1/13	7.39	Field Personnel
LN11731	Well# T924	Specific Conductivity	EPA 120.1	10/1/13	367 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	<1 ntu	Environmental Lab

Env Lab Env Lab Env Lab Env Lab <u>0</u> Assigned Env Lab Env Lab 10/01 Date BSL 28597 (5.%) Quin 100% Time 1032 Result Test No. of Field Test: TOC pH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Alkalinity, Carbonate Analysis Required Bin#._ Turbidity N-SHN TDS Approved by. Analyst Report C# 2 87 IC# 500mL WATER 250 mL WATER 500 mL WATER 500 mL WATER WATER 500 mL WATER Matrix 500 mL WATER Initial of Field Personnel: 40mL Water Operations Received by _ G Signati H2S04 H2S04 NONE HN03 NONE NONE NON Organization / Div. Relinguished by.

Listan 45 CARRA Chain of Custody Record Sample Location and Description Received by SHANLANDEN Printed Name Sampled by: Calderon WELL # Saeed Jorat Sample Location OWENS LAKE MONITORING WELL 一日かっていれて Address. JFB RM 1468 Chem Lab use only
CHEMISTRY LOG NUMBERS Sample Date Sample
For lamme duilcates use .1 or .3 Requested by . Priority 2-4 Hrs Specify 1Day 2 Wks 4Wks (213) 367-7285 FAX Date & Time N 11729 LAI1130 LN 11725 270112 かっころで MED SA LN1191 COC13- 5479

Page_1_ of_1_

coc#: 13-2499

Department of Water and Power

Environmental Laboratory 1630 N. Main Street, Bidg 7 Los Angeles, CA. 90012 (213) 367-7248/7399

City of Los Angeles

ATTACHMENT #1

METALS

EPA METHOD 200.7

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2479

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LABORATORY LOGNO	直接的新疆域的技术的	STATES THE PERSON OF THE PERSO	1900年 (中国第二次) 表色色色				SAMPLEE!						
LN11725	10/1/13	10/2/13	10/23/13			1.7. a	NS LAKE I	and the second second		L T92		ting the	
				-									
							· · · · · · · · · · · · · · · · · · ·						
										·			
	LIMIT	LIMIT]										
	TTLC	STLC	-				LN11725						
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D.F.	mg/l		•				
Antimony	500	15	200.7	0.002	0.010	1	0.00610J	-					
Arsenic	500	5	200.7	0.005	0.025	1	0.00730J	,,,,,					
Barium	10000	100	200.7	0.005	0.025	1	0.0172J						
Beryllium	75	0.75	200.7	0.001	0.005	1	ND						
Cadmium	100	1	200.7	0.001	0.005	1	ND						
Chromium (T)	. 500	5	200.7	0.005	0.025	1	0.00730J						
Cobalt	8000	80	200.7	0.001	0.005	1	ND						
Copper	2500	25	200.7	0.008	0.040	1	ND						
Lead	1000	5	200.7	0.004	0.020	1	0.00710J				_		
Molybdenum	3500	350	200.7	0.001	0.005	. 1	0.0333						
Nickel	2000	20	200.7	0.009	0.045	1	ND					_	
Selenium	100	1	200.7	- 0.009	0.045	1	0.0274J						
Silver	500	5	200.7	0.004	0.020	1	0.00400J						
Thallium	700	7	200.7	0.004	0.020	1	ND						
Vanadium	2400	24	200.7	0.016	0.080	1	ND						
Zinc	5000	250	200.7	0.002	0.010	1	0.252						

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/08/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8110 (LN12010)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

[mg/L]

		SPIKE		7-5-16-77	(DOP) SPIKE				BS/BSD % REG	RPD
METAL	RESULT	cone	jis .	- 1/4BS	CONC	BSD	V/BSDE	RPD	AIMIT .	LIMIT
Antimony	ND	2	2.07	104	2	2.07	104	0.0%	70 - 130	< 30
Arsenic	ND	2	2.09	104	2	2.08	104	0.0%	70 - 130	< 30
Barium										
Beryllium	ND	2	2.01	100	2	2.03	102	2.0%	70 - 130	< 30
Cadmium	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Chromium (T)	ND	2	1.94	97.0	2	1.95	97.5	0.5%	70 - 130	< 30
Cobalt	ND	2	2.02	101	2	2.01	100	1.0%	70 - 130	< 30
Copper	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Lead	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Molybdenum	ND	2	1.98	99.0	2	1.98	99.0	0.0%	70 - 130	< 30
Nickel	ND	2	1.97	98.5	2	1.97	98.5	0.0%	70 - 130	< 30
Selenium	ND	2	2.04	102	- 2	2.04	102	0.0%	70 - 130	< 30
Silver	 -									
Thallium	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Vanadium	ND	2	1.96	98.0	2	1.97	98.5	0.5%	70 - 130	< 30
Zinc	ND	2	2.05	102	2	2.02	101	1.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL		ERUE VALUE		Acceptable Range
Antimony	1.02	1	102	85 - 115
Arsenic	4.12	4	103	85 - 115
Barium	3.97	4	99.2	85 - 115
Beryllium	0.101	0.1	101	85 - 115
Cadmium	0.0990	0.1	99.0	85 - 115
Chromium (T)	0.392	0.4	98.0	85 - 115
Cobalt	1.01	1	101	85 - 115
Copper	0.491	0.5	98.2	85 - 115
Lead	1.03	1	103	85 - 115
Molybdenum				
Nickel	0.994	1	99.4	85 - 115
Selenium	4.10	4	102	85 - 115
Silver	0.0970	0.1	97.0	85 - 115
Thallium	4.10	4	102	85 - 115
Vanadium	0.982	1	98.2	85 - 115
Zinc	1.01	1	101	85 - 115

Analyst: KC

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.: C12185

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

EPA METHOD 200.7

DEPARTMENT OF WATER & POWER

OF THE CITY OF LOS ANGELES

Power System
Integrated Support Services

Report No. C12185 COC 13-2508 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T930 were submitted to the Environmental Laboratory on October 3, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By: ___

<u>NP</u> Date: <u>10/28/2013</u>

Checked by: And Date: W

Date: 6/29/13

APPROVED BY:

Kevin Han

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12185 COC 13-2508 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
		Metals, B, Li, Mg, Mn, Na		10/23/13	Attachment #1		
	•	Boron		10/24/13	0.088 mg/L		
LN11808	Well# T930	Lithium	EPA 200.7	10/24/13	0.061 mg/L	Environmental Lab	
		Magnesium	2222	10/24/13	13.1 mg/L		
		Manganese		10/24/13	0.363 mg/L		
		Sodium		10/24/13 ^c	86.5 mg/L		
		Nitrite –N			0.31 mg/L		
13111000	TT 11// T020	Chloride	ED 4 200 0	10/2/12	18.3 mg/L	D '	
LN11809	09 Well# T930	Well# 1930	Phosphate	EPA 300.0	10/3/13	<0.1 mg/L	Environmental Lab
		Sulfate			57.2 mg/L		
LN11810	Well# T930	TDS	SM 2540 C	10/4/13	456 mg/L	Environmental Lab	
LN11811	Well# T930	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards	
LN11812	Well# T930	Alkalinity	SM 2320 B	10/10/13	254 mg/L	Environmental Lab	
LN11012	Wen# 1930	Carbonate	31VI 2320 B	10/10/13	0 mg/L	Environmental Lao	
LN11813	Well# T930	TOC	SM 5310 C	10/15/13	0.77 mg/L	Environmental Lab	
		pН	SM 4500 H+B	10/2/13	7.5	Field Personnel	
LN11814	LN11814 Well# T930	Specific Conductivity	EPA 120.1	10/2/13	710 us/cm	Field Personnel	
		Turbidity	EPA 180.1	10/3/13	208 ntu	Environmental Lab	

Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX Sample Location owens LAKE MONITORING WELL

Chain of Custody Record Department of Water and Power City of Los Angeles

Page_1__of_1_ 24cg7

No. of Field Test:

COC#: 13 - 2538
Report C# 12185 JC# 95600 WO#

Initial of Field Personnel: Refrig#. 873

Env Lab Assigned Env Lab Env Lab Env Lab Env Lab Env Lab BSL Result Test TOC pH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Required Analysis N-SHN Turbidity 500 mL WATER WATER 250 mL WATER 500 mL WATER WATER 500 mL WATER ZO.EX WATER 500mL 500 mL 40mL - Ape ۵. H2S04 H2S04 NONE NONE NONE NONE HN03 Sample Location and Description WELL # 12 30 5 - barge # Oselo Carp 7 (2530 (24 Hr) Sample Firme CHEMISTRY LOS NUMBERS | Sample Date 6 2 \$ 5% Ę. 80811 603

Analyst Water Operations Organization / Div. Saeed Jorat Requested by.

Address. JFB RM 1468

Date & Time

71119 Tele

Printed Name

Priority

2-4 Hrs 1Day 2 Wks 4Wks Specify

Sampled by: Sace

Signati

Received Sampled by

0

Date

date

Approved by.

(2)30 Time

10/3/13

518

SHANDER SHANDER Relinquished by: A Joseth Received by

ADWP. CHEM LAB Revision: frag2001

(CC)

COC13- 5208

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2508

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

EGGNO:	THE PROPERTY OF THE PARTY OF TH						SAMPLE I	escriptio	N L			
LN11808	10/2/13	10/3/13	10/23/13		Service of the second services		L#T930			***************************************		ARCO SECURI
								<u> </u>				
					-						 •	
		<u>-</u>										
									•		 	
	LIMIT	LIMIT										
3 CDCD 4 Y	TTLC	STLC		-			LN11808					
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l					
Antimony	500	15	200.7	0.002	0.010	1	0.00700J		i			
Arsenic	500	5	200.7	0.005	0.025	1	0.0399					
Barium	10000	100	200.7	0.005	0.025	1	0.0541				 \rightarrow	
Beryllium	75	0.75	200.7	0.001	0.005	1	ND					
Cadmium	100	1	200.7	0.001	0.005	1	0.00140J					
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0754				 	
Cobalt	8000	80	200.7	0.001	0.005	1	0.00350J					
Copper	2500	25	200.7	0.008	0.040	1	ND	· · ·				
Lead	1000	5	200.7	0.004	0.020	1	0.0172J					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0741					
Nickel	2000	20	200.7	0.009	0.045	1	0.0401J				,	
Selenium	100	1	200.7	0.009	0.045	1	ND					
Silver	500	5	200.7	0.004	0.020	1	ND					
Thallium	700	7	200.7	0.004	0.020	1	ND					
Vanadium	2400	24	200.7	0.016	0.080	1	0.0206J					
Zinc	5000	250	200.7	0.002	0.010	1	0.491					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/08/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8110 (LN12010)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

					i (DUR)					
	SAMPLE	SPICE			SPIKE				:% REC	14P10
METAL	- result	CONC	i is	%/B/S	conc	(138D)	#PABSID	KPD	HWF.	LIMIT
Antimony	ND	2	2.07	104	2 -	2.07	104	0.0%	70 - 130	< 30
Arsenic	ND	2	2.09	104	2	2.08	104	0.0%	70 - 130	< 30
Barium										
Beryllium	ND	2	2.01	100	2	2.03	102	2.0%	70 - 130	< 30
Cadmium	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Chromium (T)	ND	2	1.94	97.0	2	1.95	97.5	0.5%	70 - 130	< 30
Cobalt	ND	2	2.02	101	2	2.01	100	1.0%	70 - 130	< 30
Copper	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Lead	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Molybdenum	ND	2	1.98	99.0	2	1.98	99.0	0.0%	70 - 130	< 30
Nickel	ND	2	1.97	98.5	2	1.97	98.5	0.0%	70 - 130	< 30
Selenium	ND	2	2.04	102	2	2.04	102	0.0%	70 - 130	< 30
Silver										
Thallium	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Vanadium	ND	2	1.96	98.0	2	1.97	98.5	0.5%	70 - 130	< 30
Zinc	ND	2	2.05	102	2	2.02	101	1.0%	70 - 130	< 30
										-

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL	LGS RESULETS	IRUE VALLE		Acceptable Kango
Antimony	1.02	1	102	85 - 115
Arsenic	4.12	4	103	85 - 115
Barium	3.97	4	99.2	85 - 115
Beryllium	0.101	0.1	101	85 - 115
Cadmium	0.0990	0.1	99.0	85 - 115
Chromium (T)	0.392	0.4	98.0	85 - 115
Cobalt	1.01	1	101	85 - 115
Copper	0.491	0.5	98.2	85 - 115
Lead	1.03	1	103	85 - 115
Molybdenum				
Nickel	0.994	1	99.4	85 - 115
Selenium	4.10	4	102	85 - 115
Silver	0.0970	0.1	97.0	85 - 115
Thallium	4.10	4	102	85 - 115
Vanadium	0.982	1	98.2	85 - 115
Zinc	1.01	1	101	85 - 115

Analyst: KC

Reviewed by: 10/99/17

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.: C12186

TABLE OF CONTENTS

SECTION
PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE 100001-100003

ATTACHMENT 1 METALS 200001-200003
EPA METHOD 200.7

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12186 COC 13-2509 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T918 were submitted to the Environmental Laboratory on October 3, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97 Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez FileNet Test Performed by: Environmental Lab,

Bureau of Standards

Report By: <u>NP</u> Date:

NP Date: 10/28/2013
Date: 10/28/2013

APPROVED BY:

Kevin Han

Checked by:

Interim Laboratory Manager

Environmental Laboratory

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12186 COC 13-2509 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
	·	Metals		10/23/13	Attachment #1	
		Boron		10/24/13	25.5 mg/L	
LN11815	Well# T918	Lithium	EPA 200.7	10/24/13	0.319 mg/L	Environmental Lab
DIVITOIS		Magnesium	1 11 200.7	10/24/13	29.1 mg/L	Direction Lab
		Manganese		10/24/13	0.893 mg/L	
		Sodium		10/24/13	3690 mg/L	
		Nitrite –N			<0.03 mg/L	
T N 11 1016	W.114 TO 10	Chloride	EDA 200 0	10/3/13	2080 mg/L	E
LN11816	N11816 Well# T918	Phosphate	EPA 300.0	10/3/13	0.69 mg/L	Environmental Lab
		Sulfate			141 mg/L	
LN11817	Well# T918	TDS	SM 2540 C	10/4/13	6250 mg/L	Environmental Lab
LN11818	Well# T918	Ammonia-N	SM 4500 NH3 G	10/16/13	67.7 mg/L	Bureau of Standards
LN11819	Well# T918	Alkalinity	SM 2320 B	10/10/13	2468 mg/L	Environmental Lab
LNII019	Well# 1918	Carbonate	SWI 2320 B	10/10/13	2320 mg/L	Environmental Lau
LN11820	Well# T918	TOC	SM 5310 C	10/15/13	37 mg/L	Environmental Lab
		pH	SM 4500 H+B	10/2/13	10.65	Field Personnel
LN11821	Well# T918	Well# T918 Specific Conductivity		10/2/13	10350 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	938 ntu	Environmental Lab

10-2-203 Assigned Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab Analyst(s Date BSL Page_1_of_1_ 2827 250 Time Result Test date date No. of Field Test: TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Report C# 1/8 Lo IC# 95600 WO#
Refrig#. 8/3 Shelf 9// Bin#. Analysis Required NH3-N Turbidity Approved by coc#: 13-2809 Analyst 500mL WATER 250 mL WATER 500 mL WATER Matrix 500 ml. WATER 500 mL WATER 500 mL WATER 40mL WATER Initial of Field Personnel: Relinquished by: Water Operations Sampled by ンの子となれ Received (M) Ġ Signati NONE NONE NONE HN03 H2S04 H2S04 NON 1918 <u>a</u> Jorah Organization / Div. Received by S + + + + AN OC+ Sample Location and Description Chain of Custody Record Department of Water and Power Printed Name City of Los Angeles WELL# Relinquished by: Tele PH: 10.65 2 75 Saeed Jorat Sample Location OWENS LAKE MONITORING WELL Owers Sampled by: 10 11 JFB RM 1468 2530 (24 Hr) Sample: Time 2 Requested by. Chemistry Log NUMBERS Sample Date Priority Address. 2-4 Hrs 1Day 2 Wks 4Wks Specify 7 Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX \mathcal{D} 000 ત LN 11815 8 <u>~</u> V 9WQA**10**00,63 COC13- 5200

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2509

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

ABCRATORY S	LA JUANE ESAMPLED	PATE RECEIVED	DATE				SAMPÚ: B	OF STORE PROTECTION	N.			
LN11815	10/2/13	10/3/13	10/23/13			STORY SERVICE	# T 918					
								_				
			1								•	
	LIMIT	LIMIT			1			·				
METAL	TTLC (mg/kg)	STLC (mg/l)	METHOD	MDL	RL	D. F.	LN11815 mg/l			1.		
Antimony	500	15	200.7	0.002	0.010	1	0.0218					
										-	-	
Arsenic	500	5	200.7	0.005	0.025	1 .	0.182					
Barium	10000	100	200.7	0.005	0.025	1	0.279					
Beryllium	75	0.75	200.7	0.001	0.005	1	ND					
Cadmium	100	1	200.7	0.001	0.005	1	0.00270J					
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0993					
Cobalt	8000	80	200.7	0.001	0.005	1	0.0126					
Copper	2500	25	200.7	0.008	0.040	1	0.0332J					
Lead	1000	5	200.7	0.004	0.020	1	0.0554					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.133					
Nickel	2000	20	200.7	0.009	0.045	1	0.0598					· _
Selenium	100	1	200.7	0.009	0.045	1	0.0304J		_			
Silver	500	5	200.7	0.004	0.020	1	ND					
Thallium	700	7	200.7	0.004	0.020	1	ND					
Vanadium	2400	24	200.7	0.016	0.080	1	0.429					
Zinc	5000	250	200.7	0.002	0.010	1	0.166					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

- ** exceed TTLC limit
- * exceed 10x STLC limit
- J concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/08/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8110 (LN12010)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

	SAMPLE	SPIKIE			GUUA SAIKE				357/ES0 % REG	R ib
METAL Antimony	ND	EONG 2	2.07	9/BS	CONC 2	2.07	ABSD	RPD 0.0%	20 120	< 30
,				104			104		70 - 130	
Arsenic	ND	2	2.09	104	2	2.08	104	0.0%	70 - 130	< 30
Barium										
Beryllium	ND	2	2.01	100	2	2.03	102	2.0%	70 - 130	< 30
Cadmium	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Chromium (T)	ND	2	1.94	97.0	2	1.95	97.5	0.5%	70 - 130	< 30
Cobalt	ND	2	2.02	101	2	2.01	100	1.0%	70 - 130	< 30
Copper	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Lead	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Molybdenum	ND	2	1.98	99.0	2	1.98	99.0	0.0%	70 - 130	< 30
Nickel	ND	2	1.97	98.5	2	1.97	98.5	0.0%	70 - 130	< 30
Selenium	ND	2	2.04	102	2	2.04	102	0.0%	70 - 130	< 30
Silver										
Thallium	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Vanadium	ND	2	1.96	98.0	2	1.97	98.5	0.5%	70,- 130	< 30
Zine	ND ·	2	2.05	102	2	2.02	101	1.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

WEEAU II	LGS/RESULTS	ERISERGALUS:	Rogivero	Accestable Raspe
Antimony	1.02	1	102	85 - 115
Arsenic	4.12	4	103	85 - 115
Barium	3.97	4	99.2	85 - 115
Beryllium	0.101	0.1	101	85 - 115
Cadmium	0.0990	0.1	99.0	85 - 115
Chromium (T)	0.392	0.4	98.0	85 - 115
Cobalt	1.01	1	101	85 - 115
Copper	0.491	0.5	98.2	85 - 115
Lead	1.03	1	103	85 - 115
Molybdenum				
Nickel	0.994	1	99.4	85 - 115
Selenium	4.10	4	102	85 - 115
Silver	0.0970	0.1	97.0	85 - 115
Thallium	4.10	4	102	85 - 115
Vanadium	0.982	1	98.2	85 - 115
Zinc	1.01	1	101	85 - 115

Analyst: KC

Reviewed by: JNL 10/19/17

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12187

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12187 COC 13-2510 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T928 were submitted to the Environmental Laboratory on October 3, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By: _

- '7

Date: 10/28/2013

Checked by:

۸ /

Date: 10/29/13

APPROVED BY:

Kevin Han

Doto

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12187 COC 13-2510 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	8.46 mg/L	·
LN11822	Well# T928	Lithium	EPA 200.7	10/24/13	0.319 mg/L	Environmental Lab
	110111111111111111111111111111111111111	Magnesium		10/24/13	4.08 mg/L	241110111101111011110111101111011111011111
		Manganese		10/24/13	0.398 mg/L	
		Sodium		10/24/13	488 mg/L	
		Nitrite -N			<0.03 mg/L	
LN11823	W-11# T020	Chloride	ED 4 200 0	10/3/13	232 mg/L	F
LN11823	V11823 Well# T928	Phosphate	EPA 300.0	10/3/13	<0.1 mg/L	Environmental Lab
*		Sulfate			416 mg/L	
LN11824	Well# T928	TDS	SM 2540 C	10/4/13	1213 mg/L	Environmental Lab
LN11825	Well# T928	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards
LN11826	Well# T928	Alkalinity	SM 2320 B	10/10/13	230 mg/L	Environmental Lab
LN11620	Well# 1928	Carbonate	SIVI 2320 B	10/10/13	104 mg/L	Environmental Lab
LN11827	Well# T928	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab
		pН	SM 4500 H+B	10/2/13	8.75	Field Personnel
LN11828	Well# T928 Specific Conductivity		EPA 120.1	10/2/13	2070 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	2.14 ntu	Environmental Lab

811544 10-3-2012 Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab 3,00 1 10-2-Assigned Oate BSL Page_1_of_1_ 24cm Time Result Test 多ら date date to, of Field Test: TOC pH, Specific Conductivity, METALS, B. Li, Mg, Mn, Na Shelf 9/1 "... NO# NO3*, CI, PO4*, SO4 * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Alkalinity, Carbonate Required Turbidity NH3-N Approved by 13-2810 Analyst 500 mL WATER 500 mL WATER 500 mL WATER WATER 500 mL WATER WATER Satro Initial of Field Personnel: 250 mL 40mL 500mL COC#: Relingationed by Water Operations Report C# Refrig#.8/ Received by a. ۵ ග Sampled by ם ۵. α. Signati H2S04 H2S04 NON NONE NONE HN03 NONE SHAM ANDEN Well Tars Organization / Div. Joral Jonas 928 Sample Location and Description 71119 Chain of Custody Record 1928 Department of Water and Power Printed Name City of Los Angeles Relinquished by Same A WELL # (0:2 Tele Saeed Jorat Sample Location owens LAKE MONITORING WELL Sampled by: Clerens Received by 200 김 Address. JFB RM 1468 CHEMISTRY LOG NUMBERS Sample Date. Sample Total Sample To 3% Requested by. 2-4 Hrs 2 Wks 4Wks Specify 1Day 2 Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 BY: ENV. CHEM (213) 367-7285 FAX Date & Time 268 せんさ 875 0 CADWP COC13- 5210

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2510

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

	LANGRAGORY LÖGNO	国发展的国际公司		THE PARTY OF THE P	18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			SAMPLE I	iescriptio	N			
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND	LN11822					***************	A SA			NET PER	STATE OF THE PROPERTY OF THE P		
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND													
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND													
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND													
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND										-			
METAL TTLC (mg/kg) STLC (mg/l) METHOD MDL RL D. F. mg/l IN11822 mg/l IN11822 mg/l IND Antimony 500 15 200.7 0.002 0.010 1 ND ND IND				1									-
METAL (mg/kg) (mg/l) METHOD MDL RL D.F. mg/l Antimony 500 15 200.7 0.002 0.010 1 ND Arsenic 500 5 200.7 0.005 0.025 1 0.105 Barium 10000 100 200.7 0.005 0.025 1 0.0214J Beryllium 75 0.75 200.7 0.001 0.005 1 ND Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.001 0.005 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.004 0.020 1 0.0147 Nickel 2000 20					· [1		T N 1 1 1 1 2 2	1		1	1	1
Antimony 500 15 200.7 0.002 0.010 1 ND Arsenic 500 5 200.7 0.005 0.025 1 0.105 Barium 10000 100 200.7 0.005 0.025 1 0.02141 Beryllium 75 0.75 200.7 0.001 0.005 1 ND Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.001 0.005 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.001 0.005 1 ND Lead 1000 5 200.7 0.001 0.005 1 ND Lead 1000 5 200.7 0.001 0.005 1 ND Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.004 0.020 1 0.00700J	METAL			METHOD	MDL	RL	D. F.						
Arsenic 500 5 200.7 0.005 0.025 1 0.105 Barium 10000 100 200.7 0.005 0.025 1 0.0214J Beryllium 75 0.75 200.7 0.001 0.005 1 ND Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Silver 500 5 20					-								
Barium 10000 100 200.7 0.005 0.025 1 0.0214J Beryllium 75 0.75 200.7 0.001 0.005 1 ND Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.004 0.020 1 ND Thallium 700 7 20	· · · · · · ·			-									
Beryllium 75 0.75 200.7 0.001 0.005 1 ND Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 ND Vanadium 2400 24 200.7 </td <td></td>													
Cadmium 100 1 200.7 0.001 0.005 1 ND Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 ND Vanadium 2400 24 200.7													
Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 I ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND													
Chromium (T) 500 5 200.7 0.005 0.025 1 ND Cobalt 8000 80 200.7 0.001 0.005 1 ND Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 ND Vanadium 2400 24 200.7 0.016 0.080 1 ND		100	I	200.7		0.005	1	ND					
Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.004 0.020 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 ND Vanadium 2400 24 200.7 0.016 0.080 1 ND	<u> ` ` </u>	500	5	200.7	0.005	0.025	1	ND					
Copper 2500 25 200.7 0.008 0.040 1 ND Lead 1000 5 200.7 0.004 0.020 1 0.00600J Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 ND Vanadium 2400 24 200.7 0.016 0.080 1 ND	Cobalt	8000	80	200.7	0.001	0.005	1	ND					
Molybdenum 3500 350 200.7 0.001 0.005 1 0.0147 Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Copper	2500	25	200.7	0.008	0.040	1	ND				·	
Nickel 2000 20 200.7 0.009 0.045 1 ND Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Lead	1000	5	200.7	0.004	0.020	1	0.00600J					
Selenium 100 1 200.7 0.009 0.045 1 ND Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Molybdenum	3500	350	200.7	0.001	0.005	1	0.0147					
Silver 500 5 200.7 0.004 0.020 1 ND Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Nickel	2000	20	200.7	0.009	0.045	1	ND					
Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Selenium	100	1	200.7	0.009	0.045	1	ND					
Thallium 700 7 200.7 0.004 0.020 1 0.00700J Vanadium 2400 24 200.7 0.016 0.080 1 ND	Silver	500	5	200.7	0.004	0.020	1	ND					
Vanadium 2400 24 200.7 0.016 0.080 1 ND	Thallium	700	. 7			0.020	1						
230 250 250 1 0.002 0.010 1 0.0208													
	Zino	5000	230	200.7	0.002	0.010	1	0.0200					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

[mg/L]

	SAMPLE	SPIKE			(DUP) SPIKE				Bylose % REC	
METAL Antimony	ND ND	2.00	2.10	7 B 8	2.00	2.10	%BSD 105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL	LCS RESULTS	TRUE VALUE		Acceptable Realer
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum				
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

Analyst: KC

Reviewed by: JML 10(19/13

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12188

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12188 COC 13-2526 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T929 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000 Copies to: S. Jorat

> N. Liu K. Han N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By:

Date: 10/28/2013 Date: 10/29/17

APPROVED BY: _

Kevin Han

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES Power System

Power System Integrated Support Services Report No. C12188 COC 13-2526 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
		Metals		10/23/13	Attachment #1		
		Boron		10/24/13	1.75 mg/L	<u> </u>	
LN11957	Well# T929	Lithium	EPA 200.7	10/24/13	0.779 mg/L	Environmental Lab	
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Magnesium	211200.,	10/24/13	48.8 mg/L	Environmental Eds	
		Manganese		10/24/13	0.129 mg/L		
		Sodium		10/24/13	106 mg/L		
		Nitrite –N			0.23 mg/L		
LN11958	Well# T929	Chloride	ED 4 200 0	10/4/12	77 mg /L	T- '	
LINI1938	Well# 1929	Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab	
		Sulfate			14.9 mg/L		
LN11959	Well# T929	TDS	SM 2540 C	10/7/13	646 mg/L	Environmental Lab	
LN11960	Well# T929	Ammonia-N	SM 4500 NH3 G	10/16/13	5.69 mg/L	Bureau of Standards	
LN11961	Well# T929	Alkalinity	SM 2320 B	10/10/13	410 mg/L	Environmental Lab	
LIVITYOU	₩ Cli# 1929	Carbonate	31VI 2320 B	10/10/13	0 mg/L		
LN11962	Well# T929	TOC	SM 5310 C	10/15/13	0.79 mg/L	Environmental Lab	
		pН	SM 4500 H+B	10/3/13	7.75	Field Personnel	
LN11963	Well# T929	Specific Conductivity	EPA 120.1	10/3/13	1120 us/cm	Field Personnel	
		Turbidity	EPA 180.1	10/4/13	2.14 ntu	Environmental Lab	

Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX

Chain of Custody Record Department of Water and Power City of Los Angeles

coc#:(3-2526

Report C# 12188

Bin#.

Page_1_ of_1_ JC# 795600 WO# Shelf Refrig#. Sh Initial of Field Personnel:

Sample Location Owens Lake MonitoRing Well. Sample Location and Description Page 1917 Page 191				2 :	remg#.		Shell	Bin#.	1	000	
Sample Sample Location and Description Prescuence Sample Sample Analysis Sample Location and Description Proceedings Size Marin Regulated Fig. Marin Marin TDS H2SO4 1 P Soo ml WATER NH3-N NONE 1 P Soo ml WATER TOC NONE 1 P Soo ml WATER Turbidity Turbid	ENS LAK	KE MON	IITORING WELL	≣ .		leid Personn	<u></u>	No. of Field Test:		(章) (4) (4)	Z
FOO) ple Date S	(z4.Hr) Sample: Time:	Sample Location and Description	Preservativess	Conf	ainer	Sample	Anafysis Required	Test	Analyst(s) Assigned	3
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	3[13] 1	00.1	WELL # MANITY	HNO3	-	500mL	WATER	METALS B. Li Mo Mn Na		Hov. Lab	
		324	7979	lacksquare		 	WATER	NO3*, CI, PO4*, SO4		Fnv lah	
5		_					WATER	TDS		Env Lab	
, X		$\overrightarrow{}$		$\overline{}$		_	WATER	NH3-N		BSL	
, A							WATER	Alkalinity, Carbonate		Env Lab	
*		≱				40mL	WATER	T0C		Envlab	
	>						WATER	pH, Specific Conductivity, Turbidity		Env Lab	
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.							,				
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.											
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.					<u> </u>						
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.					-						
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.											
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.					-						
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.					 						
* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.					_						
	-	*	SAMPLE WITH SHORT HOLDING TIME (48 HF	S). PLEASI	E BRI	NG IN SA	MPLE	BEFORE IT EXPIRES			

	1 .	Daf	703	3	ty/QI
John	date	Time	IIAM	6.50gm	05:9
Analust	ed by		hu- Hong	L'EL	Mes
Water Operations	Fax.	Signat	Sampled by:	Relitiquished Di.	Received by Kmle
Organization / Div.	71119	Printed Name	in Haang	INTSCARE	white
Saeed Jorat	1468 Tele		Sampled by:	Kelinquished by:	Keceived by Kon U
Lankequested by.	Address. JFB RM 1468		1 1Day AO	\Box	Specify Specify
Date & Time		•	GA.		Chem Lab COC Feirm#1 Revision: 10/2/2001
				100) <u>0</u> 0

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2526

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 200.7 Sample Matrix: WATER

PROJECT: OWENS LAKE MW

JARORATORY	COMPANY THE STATE OF THE STATE	DATE	DATE				September 1				
LN11957	10/3/13	10/4/13	10/23/13			C Trend Toward	SAMPLE T L T929	rsek muel			. P
L1411957	10/3/13	10/4/13	10/25/15			** 12.12.1	2 1) 2)		<u> </u>		
						·· ··-					
								•			
				1					•••	·	
	LIMIT	LIMIT		Ι	1	_		1			т
NATIONAL	TTLC	STLC					LN11957				
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l				
Antimony	500	15	200.7	0.002	0.010	1	0.0145				
Arsenic	500	5	200.7	0.005	0.025	1	0.0217J				
Barium	10000	100	200.7	0.005	0.025	1	0.0990				
Beryllium	75	0.75	200.7	0.001	0.005	1	ND				
Cadmium	100	1	200.7	0.001	0.005	1	ND				
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0120J				
Cobalt	8000	80	200.7	0.001	0.005	1	ND				
Copper	2500	25	_200.7	0.008	0.040	1	0.0110J				
Lead	1000	5	200.7	0.004	0.020	1	0.0134J				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.00470J				
Nickel	2000	20	200.7	0.009	0.045	1	ND				
Selenium	100	1	200.7	0.009	0.045	1	0.0201J				
Silver	500	5	200.7	0.004	0.020	1	ND				
Thallium	700	7	200.7	0.004	0.020	1	0.0106J				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.0777				
						-					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

mg/L

					(Dury				as/asid	
METAL	SAMPLE A	SPIKI CONC		1-16/BS	SHIKE		74.BSD	RPD	P//REO	RAD Live
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND .	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	· ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL		TRUE WATUE	Receivery	Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum		u= -		
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115
·				-

Analyst: KC

Reviewed by: 3 (0) 29(13

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12189

TABLE OF CONTENTS

SECTION

<u>PAGE</u>

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12189 COC 13-2527 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T926 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By: NP Da

Date: <u>10/28/2013</u>

Checked by:

Date: 10/29/1

100m Ha

Da

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12189 COC 13-2527 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
		Metals		10/23/13	Attachment #1		
		Boron		10/24/13	0.432 mg/L		
LN11964	Well# T926	Lithium	EPA 200.7	10/24/13	0.030 mg/L	Environmental Lab	
J. J.	17 OH: 1920	Magnesium	DI 11 200.7	10/24/13	7.31 mg/L		
		Manganese		10/24/13	0.115 mg/L		
		Sodium		10/24/13	39.5 mg/L		
		Nitrite –N			<0.03 mg/L		
13111065	TT 114/0007	Chloride	TID 1 000 0	10/4/10	20.8 mg/L		
LN11965	Well# T926	Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab	
		Sulfate]		15.4 mg/L		
LN11966	Well# T926	TDS	SM 2540 C	10/7/13	246 mg/L	Environmental Lab	
LN11967	Well# T926	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards	
LN11968	Well# T926	Alkalinity	SM 2320 B	10/10/13	152 mg/L	Environmental Lab	
LIVITAGE	₩ CH# 1920	Carbonate	51V1 2320 D	10/10/13	0 mg/L		
LN11969	Well# T926	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab	
		pН	SM 4500 H+B	10/3/13	7.72	Field Personnel	
LN11970	Well# T926	Specific Conductivity	EPA 120.1	10/3/13	390 us/cm	Field Personnel	
		Turbidity	EPA 180.1	10/3/13	13.4 ntu	Environmental Lab	

Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX Sample Location OWENS LAKE MONITORING WELL

Chain of Custody Record Department of Water and Power City of Los Angeles

coc#: 13-2527

No. of Field Test:

Bin#.

initial of Field Personnel:

Page_1_of_1_ 19413

Jenp: 2.7°C

Report C# 14 80 JC# JG600 WO#

Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab Assigned BSL Result Test TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Analysis Required **Turbidity** NH3-N 500mL WATER 250 mL WATER 500 mL WATER 500 mL WATER 500 mL WATER 40mL WATER 500 mL WATER Matrix Δ. Ф ഗ H2S04 H2S04 NONE NONE HN03 NONE NONE Sample Location and Description WELL# CHEMISTRY LOG NUMBERS | Sample Date | Sample iolsli3 LN11966 LV 11970 LN11967 LN1968 LN11969 LN 11961 LN11965

Water Operations Relinquished by Sampled by: Received by Signate FISCHER Organization / Div. 71119 Printed Name Received by Ron White Relinquished by XLSTIN Tele Saeed Jorat Sampled by: JFB RM 1468 J H & A A B B B Requested by. Address. Priority 2-4 Hrs Specify 1Day 2 Wks 4Wks Chem Lab COCTFORM #1
Revision: 10222001 Date & Time

15/pt/13

150 150

110/4/13

6:30

<u>0</u>6

Date

Time RANGE STATES

Approved by Analyst

COC13- 2227

d MOAL

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2527

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LABORATIORY M	PRINCIPLE STATE ST	1.301-2013年3月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	CONTRACTOR OF THE CONTRACTOR O				SAMPLE TO	ieskok iprod	N			
LN11964	10/3/13	10/4/13	10/23/13				L T926		37 (k) 3 (k) 2 (k)	(A) 関節分元		

				<u> </u>								
								**				
	LIMIT	LIMIT										
	TTLC	STLC					LN11964				T	
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l					
Antimony	500	15	200.7	0.002	0.010	1	ND		ļ			
Arsenic	500	5	200.7	0.005	0.025	1	0.00950J					
Barium	10000	100	200,7	0.005	0.025	I	0.0415					
Beryllium	75	0.75	200.7	0.001	0.005	I	ND			_		
Cadmium	100	1	200.7	0.001	0.005	1.	ND					
Chromium (T)	500	5	200.7	0.005	0.025	I	0.0174 J					
Cobalt	8000	80	200.7	0.001	0.005	1	ND					
Copper	2500	25	200.7	0.008	0.040	1	ND					
Lead	1000	5	200.7	0.004	0.020	1	ND					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0220					
Nickel	2000	20	200.7	0.009	0.045	1	ND					
Selenium	100	1	200.7	0.009	0.045	1	ND					
Silver	500	5	200.7	0.004	0.020	1	0.00600J					
Thallium	700	7	200.7	0.004	0.020	1	0.00920J					
Vanadium	2400	24	200.7	0.016	0.080	1	ND					
Zinc	5000	250	200.7	0.002	0.010	1	0.105					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

(mg/L)

METAL	SAMPLE RESULT	SRIKE CONO		74B\$	(DUP) SPIKB CONG	BSD	west.	RPD	PRS/ASIO PAREG LEIVIET	RPD.
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105.	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL	LGS RESULTS	TRUE VALUE		Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum				
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

Analyst: KC

Reviewed by:

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12190

TABLE OF CONTENTS

SECTION PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE 100001-100003

ATTACHMENT 1 METALS 200001-200005

EPA METHOD 200.7

OF THE CITY OF LOS ANGELES
Power System

Power System
Integrated Support Services

Report No. C12190 COC 13-2528 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T919 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu K. Han N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By: NP
Checked by:

Date: 10/28/2013
Date: 10/29/17

APPROVED BY: Keum

led rela

Kevin Han

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12190 COC 13-2528 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	3.93 mg/L	
LN11971	Well# T919	Lithium	EPA 200.7	10/24/13	0.124 mg/L	Environmental Lab
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Magnesium	211120017	10/24/13	0.365 mg/L	
		Manganese].	10/24/13	0.028 mg/L	·
		Sodium		10/24/13	585 mg/L	
		Nitrite –N			<0.03 mg/L	
13111070	M7. 114 TO 1.0	Chloride	ED 4 200 0	10/4/12	228 mg/L	Position and the
LN11972	Well# T919	Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab
		Sulfate			151 mg/L	
LN11973	Well# T919	TDS	SM 2540 C	10/7/13	1603 mg/L	Environmental Lab
LN11974	Well# T919	Ammonia-N	SM 4500 NH3 G	10/16/13	2.45 mg/L	Bureau of Standards
LN11975	Well# T919	Alkalinity	SM 2320 B	10/10/13	912 mg/L	Environmental Lab
LNII9/J	W 611# 1919	Carbonate	3W 2320 B	10/10/13	92 mg/L	Environmental Lab
LN11976	Well# T919	TOC	SM 5310 C	10/15/13	2.9 mg/L	Environmental Lab
		pН	SM 4500 H+B	10/3/13	12.0	Field Personnel
LN11977	Well# T919	Specific Conductivity	EPA 120.1	10/3/13	5050 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	32.2 ntu	Environmental Lab

Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA 90012 (213) 367-7248/7399 (213) 367-7285 FAX Sample Location OWENS LAKE MONITORING WELL

Department of Water and Power

Chain of Custody Record City of Los Angeles

coc#:13-3528

Page_1_of_1

Temps 3.1°C

Shelf

Report C# 19/10 JC#595600 WO#

No. of Field Test: Initial of Field Personnel: Refrig#.

j	Analyst(s) Assigned		Env Lab	Env Lab	Fnvlah	100		Env Lab	Env Lab	Fny J oh	ווא רמו				_									
	Test Result		-																					
	Analysis Required		METALS, B, LI, Mg, Mn, Na	NO3*, CI, PO4*, SO4	TDS	N-SHN	Allcollaste, O. the state of	Alkallilly, Carbonate	TOC	pH, Specific Conductivity,	Nichalan I												BEFORE IT EXPIRES.	
	Sample		SOUTH WATER	250 mL WATER	500 mL WATER	500 mL WATER	TANAT	WA ER	WATER	500 mL WATER													MPLE	
	Container	3 100	3000	250 mL	500 mL	500 m	200	200	4gmL	500 mL													G IN S	
			+	<u>a</u>	₽	۵	Δ	+-	ין	۵.	ļ. —	-					_	-			 	4	BRIN	
	ilves.	_	4	<u>-</u>	三 1	40		-	<u>*</u>	<u> </u>	_	+			1	-	-	+	-		+	$\frac{1}{2}$	EASE	
	Preservatives	EN E		NONE	NONE	H2S04	HNON	7000	2	NONE			-										(S) PL	
	Sample Location and Description	WELL#																					* SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES.	
WIT NO.	Sample Time	13:15	ے				***********				>	}												
	Sample Date	$\mathcal{E}[\alpha]$									<u>}</u>			,										
Chem Lab Lise only	CHEMISTRYLOG NUMBERS Sample Date Sample (for sample upplicates use. 1 or 5)		C C C C C C C C C C C C C C C C C C C	1	2552	4 LNEST	5 LNH975	6 LVIIS7C		2	8		6	10		11	12	Ç	20	14	15		16	L

Organization / Div. 71119 Printed Name Tele Saeed Jorat Relinquished by: Received by, Sampled by: JFB RM 1468 728833 3 是 Requested by. Address. Specify 2 Wks 4Wks 1Day Chem Lat COC Form #1 Date & Time Stampio Revision: 10/2/2001 CADWP

Date

me

date date

Approved by Analyst

Water Operations

Fax.

7%

6:55

6:55

Relinquished by

Received by

Sampled by:

Signati

COC13- 5258

100003

ATTACHMENT #1

METALS

EPA METHOD 200.7

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2528

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LABURATORY LOGNO							SAMPLE I		ON:			
LN11971	10/3/13	10/4/13	10/23/13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			L T919					
												
		<u> </u>										

			1		•						•	_
	LIMIT	LIMIT		Γ	<u> </u>		ſ	1		1		·
METAL	TTLC (mg/kg)	STLC (mg/l)	METHOD	MDL	RL	D. F.	LN11971 mg/l					
		,										•
Antimony	500	15	200.7	0.002	0.010	1	ND					
Arsenic	500	5	200.7	0.005	0.025	1	0.0883					
Barium	10000	100	200.7	0.005	0.025	1	0.0579					
Beryllium	75	0.75	200.7	0.001	0.005	1	ND					
Cadmium	100	1	200.7	0.001	0.005	1	ND					
Chromium (T)	500	5	200.7	0.005	0.025	1	0.00720J					
Cobalt	8000	80	200.7	0.001	0.005	1	ND					
Copper	2500	25	200.7	0.008	0.040	1	ND					
Lead	1000	- 5	200.7	0.004	0.020	1	0.00900J					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0349					
Nickel	2000	20	200.7	0.009	0.045	1	0.0149J					
Selenium	100	1	200.7	0.009	0.045	1	0.0210 J					
Silver	500	5	200.7	0.004	0.020	1	ND					
Thallium	700	7	200.7	0.004	0.020	1	0.00480J					
Vanadium	2400	24	200.7	0.016	0.080	1	ND					
Zine	5000	250	200.7	0.002	0.010	1	0.0535					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2528

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

LABORATORY LOGNO							SAMPLE I	ESCRIPTIO	N H		
LN11971 Dup	10/03/13	10/4/13	10/23/13	0.00	1 (Company (1) (C) (C) (C) (C)	WELL	T919				
										<u> </u>	
	LIMIT	LIMIT				,	Dup				
a attenti a ti	TTLC	STLC					LN11971				
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l				
Antimony	500	15	200.7	0.002	0.010	1	ND				
Arsenic	500	5	200.7	0.005	0.025	1	0.0814				
Barium	10000	100	200.7	0.005	0.025	1	0.0497				
Beryllium	75	0.75	200.7	0.001	0.005	1	ND				
Cadmium	100	1	200.7	0.001	0.005	1	ND				
Chromium (T)	2500	5	200.7	0.005	0.025	1	0.0106J				·
Cobalt	8000	80	200.7	0.001	0.005	I	ND				
Copper	2500	25	200.7	0.008	0.040	I	0.0128J	·			
Lead	1000	5	200.7	0.004	0.020	1	0.00640J				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0353				
Nickel	2000	20	200.7	0.009	0.045	1	0.0213J				
Selenium	100	1	200.7	0.009	0.045	1	0.0150J				
Silver	500	5	200.7	0.004	0.020	1	0.00810J				
Thallium	700	7	200.7	0.004	0.020	1	ND				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.0349				
					•						

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

- ** exceed TTLC limit
- * exceed 10x STLC limit
- J concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One) mg/kg

	SAMPLE	SPIKE			(DIEP) SAIKE				BS/BSID W/JREQ	Refs
METAL	RESULT	CONC	BS	%BS	CONC	BSD	%(PSID	RPD	LIMIT	LIMEL
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium	<u></u> -									
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	.2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

QA/QC Report

II. Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: LN11971

UNIT: (Circle One)

mg/kg

mg/L

	SAMPLE	SPIKE			(DUP) SPIKE				MS/MSID M/REG.	RPD
METALLER ATTE	RESULA	CONC	.: M S ∃	7,MS	CONC	WSD	*/MSD	RPD	LIMIT	LIMIT
Antimony	ND	2.00	9.60	96	2.00	9.47	94.8	1.3%	70 - 130	< 30
Arsenic	0.0883	2.00	10.1	100	2.00	9.99	99	1.0%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	10.3	103	2.00	10.2	102	1.0%	70 - 130	< 30
Cadmium	ND	2.00	9.20	92	2.00	9.09	90.8	1.3%	70 - 130	< 30
Chromium (T)	0.00720	2.00	9.55	95.4	2.00	9.56	95.6	0.2%	70 - 130	< 30
Cobalt	ND	2.00	9.34	93.4	2.00	9.22	92.2	1.3%	70 - 130	< 30
Copper	ND	2.00	9.73	97.2	2.00	9.55	95.6	1.7%	70 - 130	< 30
Lead	0.00900	2.00	9.12	91.2	2.00	9.02	90.2	1.1%	70 - 130	< 30
Molybdenum	0.0349	2.00	9.50	94.6	2.00	9.42	93.8	0.8%	70 - 130	< 30
Nickel	0.0149	2.00	9.75	97.4	2.00	9.62	96	1.4%	70 - 130	< 30
Selenium	0.0210	2.00	9.24	92.2	2.00	9.15	91.2	1.1%	. 70 - 130	< 30
Silver			·							
Thallium	0.00480	2.00	8.65	86.4	2.00	8.56	85.6	0.9%	70 - 130	< 30
Vanadium	ND	2.00	10.2	102	2.00	10.1	101	1.0%	70 - 130	< 30
Zinc	0.0535	2.00	9.45	94	2.00	9.32	92.6	1.5%	70 - 130	< 30

MS = Matrix Spike MSD = Matrix Spike Duplicate %MS = Percent Recovery of Matrix Spike

RPD = Relative Percent Difference

%MSD = Percent Recovery of Matrix Spike Duplicate

III. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL		TERUTUR ALEGE		Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum		·		
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115
			·	

Analyst: KC

Reviewed by: # 10119117

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12191

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

EPA METHOD 200.7

OF THE CITY OF LOS ANGELES Power System **Integrated Support Services**

Report No. C12191 COC 13-2529 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T931 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K, Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By:

Date: 10/28/2013

Checked by:

L Date: 10/29/17

APPROVED BY:

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12191 COC 13-2529 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	0.309 mg/L	1
LN11978	Well# T931	Lithium	EPA 200.7	10/24/13	0.060 mg/L	Environmental Lab
2.113.10	,, 611, 1351	Magnesium	2111200	10/24/13	18.1 mg/L	Divisionician Lab
		Manganese]	10/24/13	0.586 mg/L	
		Sodium]	10/24/13	75.7 mg/L	
		Nitrite –N			<0.03 mg/L	
T 3-11 1-0-70	N7.11# T021	Chloride	ED 4 200 0	10/4/10	16.0 mg/L	
LN11979	Well# T931	Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab
		Sulfate			51.5 mg/L	
LN11980	Well# T931	TDS	SM 2540 C	10/7/13	453 mg/L	Environmental Lab
LN11981	Well# T931	Ammonia-N	SM 4500 NH3 G	10/16/13	3.44 mg/L	Bureau of Standards
LN11982	Well# T931	Alkalinity	SM 2320 B	10/10/13	310 mg/L	Environmental Lab
LIN11962	W CII# 1931	Carbonate	SWI 2320 B	10/10/13	0 mg/L	Environmental Lab
LN11983	Well# T931	TOC	SM 5310 C	10/15/13	2.5 mg/L	Environmental Lab
		pН	SM 4500 H+B	10/3/13	7.08	Field Personnel
LN11984	Well# T931	Specific Conductivity	EPA 120.1	10/3/13	790 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	9.52 ntn	Environmental Lab

Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX

Chain of Custody Record Department of Water and Power City of Los Angeles

coc#: 13-3529

TOTAL CONSTRUCTION Report \mathbb{C}^{+} $|\mathcal{F}[\mathcal{I}]|$

Sample Location OWENS LAKE MONITORING WELL MW-2, 793

No. of Field Test:

Page_1_of_1__153**

Initial of Field Personnel: Refri舜.

Env Lab Env Lab Assigned Env Lab Env Lab Env Lab Env Lab Analyst(s BSL Test Result TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Required Analysis Turbidity NH3-N 500mL WATER 250 mL WATER 500 mL WATER 500 ml. WATER 500 mL WATER 500 mL WATER 40mL WATER ۵. ௳ ۵. Δ. α. <u>a</u> ტ NONE NONE NONE NONE H2S04 H2S04 HN03 Sample Location and Description WELL# Chemitab use only
CHEMISTRY LOG NUMBERS Sample Date Sample <u>ن</u> ان 501 LN 11982 でいる。 LV 11983 08511 WI LN11978 10527 このほうん

date date Approved by Analyst Water Operations

Organization / Div.

Saeed Jorat

71119

Tele

JFB RM 1468

Requested by .

Date & Time Stamp

10/3/13

9:25AM Time

0 1

6.55

6:05/

Date

Relinquished by VISTA TSCHER Printed Name Received by Aon White Sampled by: 五个家会的 2 Wks 4Wks Specify 2-4 Hrs 1Day

Relinguished

Received by

Sampled by:

Signati

100003 COC13- 5258

CVDMb

Chem Lab COCERGY #1

ATTACHMENT #1

METALS

EPA METHOD 200.7

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2529

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

ABORATORÝ :	THE RESERVE AND PROPERTY OF THE PERSON NAMED IN	EFFERING AND AND AND AND AND ADDRESS OF THE PARTY OF THE	THE REPORT OF THE PARTY OF THE	L. CHESTER CONTRACTOR			SAMPLES	ale mili				
LN11978	10/3/13	10/4/13	10/23/13			DESCRIPTION OF THE PERSON OF T	L T931					
						<u> </u>						
	,										· · · · · ·	
			1									
	LIMIT TTLC	LIMIT STLC					LN11978					T
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l					
Antimony	500	15	200.7	0.002	0.010	1	0.00770J					
Arsenic	500	5	200.7	0.005	0.025	1	ND					
Barium	10000	100	200.7	0.005	0.025	1	0.0808					
Beryllium	75	0.75	200.7	0.001	0.005	1	ND					
Cadmium	100	1	200.7	0.001	0.005	1	ND					
Chromium (T)	500	5	200.7	0.005	0.025	1	ND		-			
Cobalt	8000	80	200.7	0.001	0.005	1	ND					
Copper	2500	25	200.7	0.008	0.040	1	ND					
Lead	1000	5	200.7	0.004	0.020	1	0.0115J					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.00810			_		
Nickel	2000	20	200.7	0.009	0.045	1	ND					
Selenium	100	1	200.7	0.009	0.045	1	ND					
Silver	500	5	200.7	0.004	0.020	1	ND					
Thallium	700	7	200.7	0.004	0.020	1	0.00660J				·	
Vanadium	2400	24	200.7	0.016	0.080	. 1	ND					
Zinc	5000	250	200.7	0.002	0.010	1	0.108					
·												

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

[mg/L]

		100			14000				- SKISID	
MBTAL	SAMPLE RESULT	CONC	BS:	- %BS	SPIKE CONC	BSD	%BSD	RPD =	W REC	LIMIT
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium			,							
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND ·	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
							•			

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL T.		Teriore WALCID	Recavery 1	Action Strice Rusine
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum			·	
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

Analyst: KC

Reviewed by:

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.: C12192

TABLE OF CONTENTS

SECTION PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE 100001-100003

ATTACHMENT 1 METALS 200001-200003 EPA METHOD 200.7

OF THE CITY OF LOS ANGELES

Power System
Integrated Support Services

Report No. C12192 COC 13-2530 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T920 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu K. Han N. Perez

File Net

Test Performed by: Environmental Lab,

Bureau of Standards

Report By:

NP Date: 10/28/2013

PPROVED BY:

Lonely

Kevin Han ' n Laboratory N

Interim Laboratory Manager Environmental Laboratory

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12192 COC 13-2530 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
		Metals			Attachment #1		
		Boron		10/24/13	<0.009 mg/L		
LN11985	Well# T920	Lithium	EPA 200.7	10/24/13	0.025 mg/L	Environmental Lab	
	.,	Magnesium		10/24/13	3.93 mg/L		
		Manganese	1	10/24/13	0.378 mg/L		
		Sodium		10/24/13	14.7 mg/L		
		Nitrite –N			1.34 mg/L	Environmental Lab	
LN11986	Well# T920	Chloride	ED 4 200 0	10/4/12	5.07 mg/L		
LN11900		Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab	
		Sulfate			6.86 mg/L	•	
LN11987	Well# T920	TDS	SM 2540 C	10/7/13	154 mg/L	Environmental Lab	
LN11988	Well# T920	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards	
LN11989	Well# T920	Alkalinity	SM 2320 B	10/10/13	80 mg/L	E	
LIVI1909	WEII# 1920	Carbonate	SM 2320 B	10/10/13	0 mg/L	Environmental Lab	
LN11990	Well# T920	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab	
		pН	SM 4500 H+B	10/3/13	7.43	Field Personnel	
LN11991	Well# T920	Specific Conductivity	EPA 120.1	10/3/13	204 us/cm	Field Personnel	
			EPA 180.1	10/3/13	35.7 ntu	Environmental Lab	

Temps: 41: C 10/4/13 Assigned Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab 10 Date BSL Page_1_of_1_ Time 6:34 2AC PU date No. of Field Test: TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Alkalinity, Carbonate Report C# [7 (4) 2 JC#795650 WO# Required Analysis NH3-N Turbidity Approved by Analyst COC#: 13~2330 WATER WATER WATER WATER 500mL WATER WATER 250 mL WATER Matrix Initial of Field Personnel: 500 mL 500 mL 500 mL 500 mL 40mL Relinguished by Water Operations Received by Sampled by: ۵ Δ ۵ Ω. Φ ۵ ۵ Signati NONE NONE H2S04 H2S04 HN03 NONE NONE ピラトの記録 Sample Location OWENS LAKE MONITORING WELL M 167-5, 7920 Organization / Div. Relinquished by STAM #5 CHER Chain of Custody Record 71119 Sample Location and Description Printed Name Department of Water and Power Received by Ron White City of Los Angeles WELL# Tele Saeed Jorat Sampled by: Address. JFB RM 1468 (24 Hr) Sample Time S358333 Requested by. CHEMISTRY LOG NUMBERS | Sample Date Priority 24 Hrs Specify 1Day 2 Wks 4 Wks Environmental Laboratory Stamp Re-1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 Chem Lab COC Form #1 (213) 367-7248/7399 (213) 367-7285 FAX Chem Lab use only LS 2990 N 11989 L2 1261 LNII988 LN11986 LN11985 の言のと **FVDM**b

ATTACHMENT #1

METALS

EPA METHOD 200.7

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2530

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

MARORAGONY.	HIAG	DATES.	E DATE A					i de la companya de l La companya de la co			
LN11985	10/3/13	10/4/13	10/23/13				L MW-5 T9		有些机器机械的数据线线机		
		1	1								_
<u> </u>	LIMIT TTLC	LIMIT		<u> </u>	<u> </u>	 	T. 7.1.1.00.5	<u> </u>	_	T	· T
METAL	(mg/kg)	STLC (mg/l)	METHOD	MDL	RL	D. F.	LN11985 mg/l				
Antimony	500	15	200.7	0.002	0.010	1	ND				
Arsenic	500	5	200.7	0.005	0.025	1	ND ·				
Barium	10000	100	200.7	0.005	0.025	1	0.0503				
Beryllium		0.75			0.025						i
-	75		200.7	0.001	-	1	ND				1.
Cadmium	100	1	200.7	0.001	0.005	1	ND				
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0269				
Cobalt	8000	80	200.7	0.001	0.005	1	ND		-		
Copper	2500	25	200.7	0.008	0.040	1	ND				
Lead	1000	5	200.7	0.004	0.020	1	0.0113J				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0199				
Nickel	2000	20	200.7	0.009	0.045	1	ND				
Selenium	100	1	200.7	0.009	0.045	1	0.0126J				
Silver	500	5	200.7	0.004	0.020	1	ND .				
Thallium	700	7	200.7	0.004	0.020	1	ND				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.114				<u> </u>
-											

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

(mg/L)

MRTAL	SAMPLE RESULT	SPIKE EONG		19/BS	(DIUP) SPIKIA GONC	BSID	%BSD	RPD	BS/BS(6)	EUMIT
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver						·				
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate

RPD = Relative Percent Difference

%BS = Percent Recovery of Blank Spike

%BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL	LCS RESULTS	TRUE VALUE		Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum				
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

Analyst: KC

Reviewed by: JN 10(2017

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12194

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

EPA METHOD 200.7

OF THE CITY OF LOS ANGELES

Power System **Integrated Support Services** Report No. C12194 COC 13-2537 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T923 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013

Work Order No.: ZAC97 Job Card No.: J9500

Copies to: S. Jorat

N. Liu

K. Han

N. Perez FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Date: 10/28/2013

Checked by:

Date: 10/20

APPROVED BY:

Interim Laboratory Manager **Environmental Laboratory**

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12194 COC 13-2537 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
		Metals		10/23/13	Attachment #1		
		Boron		10/24/13	21.0 mg/L		
LN12013	Well# T923	Lithium	EPA 200.7	10/24/13	0.849 mg/L	Environmental Lab	
	· · · · · · · · · · · · · · · · · · ·	Magnesium	51112000	10/24/13	34.0 mg/L	- Invitational Edo	
		Manganese		10/24/13	0.874 mg/L	1	
		Sodium		10/24/13	957 mg/L		
		Nitrite –N			<0.03 mg/L		
LN12014	4 Well# T923	Chloride	ED 4 200 0	10/4/12	577 mg/L	Environmental Lab	
LIN12014		W CII# 1923	Phosphate	EPA 300.0	10/4/13	<0.1 mg/L	Environmental Lab
		Sulfate			275 mg/L	1	
LN12015	Well# T923	TDS	SM 2540 C	10/7/13	2858 mg/L	Environmental Lab	
LN12016	Well# T923	Ammonia-N	SM 4500 NH3 G	10/16/13	2.13 mg/L	Bureau of Standards	
LN12017	Well# T923	Alkalinity	SM 2320 B	10/10/13	1198 mg/L	Environmental Lab	
LIVIZOT7	W 611# 1923	Carbonate	5WI 2520 B	10/10/13	0 mg/L	Environmental Lab	
LN12018	Well# T923	TOC	SM 5310 C	10/15/13	1.8 mg/L	Environmental Lab	
			SM 4500 H+B	10/4/13	6.81	Field Personnel	
LN12019	LN12019 Well# T923	Specific Conductivity	EPA 120.1	10/4/13	4570 us/cm	Field Personnel	
			EPA 180.1	10/4/13	98.3 ntu	Environmental Lab	

8 to 12 Co Temp 7.1°C 74097 Page_1_of_1 Result Time 2000 B); [4] date date No. of Field Test: METALS, B, Li, Mg, Mn, Na TOC PH, Specific Conductivity, NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. #0*M* Required Analysis Bir# N-SHN Turbidity Approved by Analyst coc#: 13-2537 Refright 8/11 Shelf 9/3 500mL WATER 250 mL WATER 500 mL WATER Matrix. 500 mL WATER 500 mL WATER 500 mL WATER WATER Initial of Field Personnel: 40mL Water Operations Sampled by: Relinquished Receivedby ۵. 200 ۵. ۵. ٩ ල ۵ Signati H2S04 H2S04 NONE NONE NONE HN03 NONE Organization / Div. **Chain of Custody Record** Sample Location and Description Department of Water and Power Printed Name 19 Chanh City of Los Angeles WELL # Received by Saeed Jorat Sample Location OWENS LAKE MONITORING WELL Relinquished by: Sampled by: JFB RM 1468 Chem Lab use only.
CHEMISTRY LOS NUMBERS | Sample Date | Sample Requested by. Priority Address. 2-4 Hrs 1Day 2 Wks 4Wks Specify Environmental Laboratory T Q 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 Date & Time-Stamp Stamp (213) 367-7248/7399 0 0 40 (213) 367-7285 FAX #3H) せつと <u>ه</u> د $\frac{o}{\alpha}$ 12/2013 Them Lab COC Form #! 70 G Revision: 10/2/2001 COC13-2537 100003

Env Lab **Env Lab** Env Lab Env Lab Env Lab Env Lab

BSL

ATTACHMENT #1

METALS

EPA METHOD 200.7

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2537

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

EABORATORY LOGNO	THE REPORT OF THE PARTY OF THE		TATION CONTRACTOR AND ADDRESS OF THE PARTY O				AMPIE	DESCRIPTO			
LN12013	10/4/13	10/4/13	10/23/13			and the second second	L# T923				
	,					<u>-</u> -				•	
							<u> </u>				 · · · · · · · · · · · · · · · · · · ·
-	1. - .								•		
	LIMIT	LIMIT		1	Τ			1	, .	T	 T.
METAL	TTLC (mg/kg)	STLC (mg/l)	METHOD	MDL	RL	D. F.	LN12013 mg/l				
Antimony	500		- .	0.002	0.010				-		
		15	200.7			1	ND				
Arsenic	500	. 5	200.7	0,005	0.025	1	0.0351				
Barium	10000	100	200.7	0.005	0.025	1	0.170				
Beryllium	75	0.75	200.7	0.001	0.005	1	ND				
Cadmium	100	1	200.7	0.001	0.005	1	ND				
Chromium (T)	500	5	200.7	0.005	0.025	1	0.007 7 0J			. .	
Cobalt	8000	80	200.7	0.001	0.005	1	ND				
Copper	2500	25	200.7	0.008	0.040	1	ND				
Lead	1000	5	200.7	0.004	0.020	1	0.00780J				
Molybdenum	3500	350	200.7	0.001	0.005	I	0.0760				
Nickel	2000	20	200.7	0.009	0.045	1	0.0178J				
Selenium	100	1	200.7	0.009	0.045	1	0.0197J				
Silver	500	5	200.7	0.004	0.020	1	ND				
Thallium	700	7	200.7	0.004	0.020	1	ND				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.313				

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

mg/L

METAL	SAMPLE PRESULT:	I SPIKE CONCL	BS	%es	(DUP) Spike CONC	BSD	94 BSD	RPD	BS/BSB %(REG)	RPD ⁽¹ LIMIT
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
	,									

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

MEGAL				Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum			·	
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12195

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12195 COC 13-2538 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T925 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat N. Liu

> K. Han N. Perez FileNet

Test Performed by: Environmental Lab,

Bureau of Standards rt By: NP Date: 10/28/2013

Report By: <u>NP</u> Checked by: XIII

Date: 15/2012

APPROVED BY:

Kevin Han I

Interim Laboratory Manager Environmental Laboratory

100001

OF THE CITY OF LOS ANGELES

Power System
Integrated Support Services

Report No. C12195 COC 13-2538 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	0.055 mg/L	
LN12027	Well# T925	Lithium	EPA 200.7	10/24/13	0.149 mg/L	· · · · · · · · · · · · · · · · · · ·
		Magnesium		10/24/13	10.2 mg/L	
		Manganese		10/24/13	0.937 mg/L	
		Sodium NitriteN Chloride	·	10/24/13	17.0 mg/L	
		NitriteN			0.02 mg/L	
T 3112020	W-11# T025	Chloride	ED 4 200 0	10/4/12	34.3 mg/L	
LN12028	Well# T925	Phosphate	EPA 300.0	10/4/13	<0.01 mg/L	Environmental Lab
		Sulfate			43.8 mg/L	
LN12029	Well# T925	TDS	SM 2540 C	10/7/13	227 mg/L	Environmental Lab
LN12030	Well# T925	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards
LN12031	Well# T925	Alkalinity	SM 2320 B	10/10/13	58 mg/L	F
LNIZUSI	Well# 1923	Carbonate	SWI 2320 B	10/10/13	20 mg/L	Environmental Lab
LN12032	Well# T925	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab
		pН	SM 4500 H+B	10/4/13	9.12	Field Personnel
LN12033	Well# T925	Specific Conductivity	EPA 120.1	10/4/13	170 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/4/13	<1.0 ntu	Environmental Lab

Environmental Laboratory

1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX

Department of Water and Power

City of Los Angeles

Chain of Custody Record

coc#: 13-2538

Page_1_of_1

ZACG No. of Field Test: Bin#.

Report C# [2-(9\sum \super \text{Spelf 9/}\)

Env Lab Env Lab Assigned Env Lab Env Lab Env Lab Env Lab BSL A 10413 Jano 7,10C Test Result TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Analysis Required **Turbidity** N-SHN 500mL WATER 500 mL WATER 250 mL WATER 500 mL WATER 500 mL WATER 40mL WATER 500 mL WATER Matrix Initial of Field Personnel: 8 G Δ Δ H2S04 NONE NONE NONE H2S04 NONE HN03 Sample Location and Description WELL# Sample Location OWENS LAKE MONITORING WELL CHEMISTRY LOG NUMBERS | Sample Date | Sample | Time <u>2</u> S ट्या Requested by . から 2030 2028 7079 V BOST 4032 703 202

date date Approved by Analyst

Water Operations

Organization / Div. 71119

Tele

JFB RM 1468

Address.

Date & Time.

Signati

Printed Name

9:50 AM 10/4/1

19:19

<u>S</u>

Date

Time

22 Relinquished by: Sampled by:

Received by Sampled by:

(Jannab) Received by [

Chen Lab COC Form #1

Revision: 102/2001

ફુ

Specify

22WKs

31Day

COC₁₃₋₂₅₃₈

LADWP

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2538

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)

EPA Method 200.7 Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LARORATORY LOGNO		Park Silver Silver Silver					SAMPLE D)ESCRIPTIO	N T			
LN12027	10/4/13	10/4/13	10/23/13			WEL	L# T925		A LOCALIST CONTRACTOR OF THE PARTY OF THE PA		V and the second	
			:							<u> </u>		·
	LIMIT	LIMIT	1									
	TTLC	STLC					LN12027					
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l					
Antimony	500	15	200.7	0.002	0.010	1	ND					
Arsenic	500	5	200.7	0.005	0.025	1	0.0277					
Barium	10000	100	200.7	0.005	0.025	1	0.00760J					
Beryllium	75	0.75	200.7	0.001	0.005	1	ND					
Cadmium	100	1	200.7	0.001	0.005	1	ND					
Chromium (T)	500	5	200.7	0.005	0.025	1	0.00780J					
Cobalt	8000	80	200.7	0.001	0.005	1	ND	·				
Copper	2500	25	200.7	0.008	0.040	1	, ND					
Lead	1000	, 5	200.7	0.004	0.020	1	ND					
Molybdenum	3500	350	200.7	0.001	0.005	1	0.00450J					
Nickel	2000	20	200.7	0.009	0.045	1	ND					
Selenium	100	1	200.7	0.009	0.045	1	ND					
Silver	500	5	200.7	0,004	0.020	1	ND					
Thallium	700	7	200.7	0.004	0.020	1	ND					-
Vanadium	2400	24	200.7	0.016	0.080	1	ND					
Zinc	5000	250	200.7	0.002	0.010	1	0.501	<u> </u>				
2.1110	3000		200.1	0.002	0.010	1	0.501					

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

- ** exceed TTLC limit
- * exceed 10x STLC limit
- J concentration above MDL and below RL

Analyst: KC

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

mg/L

	SAMPLE	SPRE			(OUP) SPIKE				BS/BSD %/REQ	RPD I
METAL	RESIDU	donc	ES-	2,088	CONC	BSD #	PABSD.	RPO	LIMIT	E ILIMITE A
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium					-					
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

				(41)511631315355 (PM)(BH)(6)
METAL		TRUE VALUE.	Laisis and Maria and Maria	Acceptable Range % Recovery
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105 -	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum				
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115
·				

Analyst: KC

Reviewed by:

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES **Power System Integrated Support Services**

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.: C12193

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12193 COC 13-2536 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T922 were submitted to the Environmental Laboratory on October 4, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu K. Han

N. Perez FileNet Test Performed by: Environmental Lab,

Bureau of Standards

Report By: Checked by:

NP. Date: 10/28/2013

APPROVED BY:

Kevin Han

Date

Interim Laboratory Manager Environmental Laboratory

OF THE CITY OF LOS ANGELES Power System Integrated Support Services

COC 13-2536
Page 2 of 2 w/ attachments

Report No. C12193

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	<0.009 mg/L	
LN12020	Well# T922	Lithium	EPA 200.7	10/24/13	0.043 mg/L	Environmental Lah
	.,, 5,, 2.5	Magnesium	211120017	10/24/13	6.44 mg/L	
		Manganese		10/24/13	0.146 mg/L	
		Sodium]	10/24/13	9.09 mg/L	
		Nitrite -N			0.43 mg/L	
LN12021	Well# T922	Chloride	ED 4 200 0	10/4/12	8.84 mg/L	
LN12021	WCII# 1922	Phosphate	EPA 300.0	10/4/13	<0.01 mg/L	Environmental Lab
		Sulfate			9.12 mg/L	
LN12022	Well# T922	TDS	SM 2540 C	10/7/13	125 mg/L	Environmental Lab
LN12023	Well# T922	Ammonia-N	SM 4500 NH3 G	10/16/13	<0.20 mg/L	Bureau of Standards
LN12024	Well# T922	Alkalinity	SM 2320 B	10/10/13	74 mg/L	Environmental Lab
151(1202)	WOMF 1922	Carbonate	5141 2320 B	10/10/13	0 mg/L	Environmentar Lab
LN12025	Well# T922	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab
		pН	SM 4500 H+B	10/4/13	7.44	Field Personnel
LN12026	Well# T922	Specific Conductivity	EPA 120.1	10/4/13	202 us/cm	Bureau of Standards Environmental Lab Environmental Lab
		Turbidity	EPA 180.1	10/4/13	3.74 ntu	Environmental Lab

No. of Field Test | CMO 7,1 °C. Page_1_ of_1 18:19 1520 TOC PH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Analysis Required Bin#. NH3-N urbidity Approved by Analyst coc#: |3-2536 500mL | WATER 250 mL WATER 500 mL WATER 500 mL WATER 500 mL WATER 500 mL WATER WATER Matrix Report C# 17-193 Initial of Field Personnel: 40mL Water Operations Relinguished Refrig#. 🐒 1,006 Ω. Sampled by Received by ۵. ۵ ۵ Q Signate NONE NONE H2S04 NONE H2S04 NONE HN03 this state of Organization / Div. Chain of Custody Record Sample: Location and Description Department of Water and Power Printed Name OGUNNUM City of Los Angeles WELL # Tele Received by H. Saeed Jorat Sample Location owens LAKE MONITORING WELL Relinquished Sampled by: **JFB RM 1468** (24.Hr) Sample: Time 15% \$\$ Requested by. CHEMISTRY LOG NUMBERS | Sample pate. Priority Address. 2-4 Hrs Specify 2 Wks 4Wks 1Day Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 2025 2024 2002 (213) 367-7248/7399 NISORO 2022 (213) 367-7285 FAX 20% Chem Lab COC Form #1 60% Revision: 10/2/2001 COC13- 2536 **10**0003

Env Lab

Date

Time

<u>V</u>

Env Lab

Env Lab

BSL

Assigned

Result

Env Lab Env Lab Env Lab

Analyst(s)

Ro 10-4-13

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2536

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LABORATURY LOGNO	化工物制用系统统工程系统 经营业 经收	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	A PERSONAL PROPERTY OF THE PRO	La Printer College			SAMPLE I	e e e e e e e e e e e e e e e e e e e			
LN12020	10/4/13	10/4/13	10/23/13				L# T922				
										 _	
	LIMIT	LIMIT]						-		
	TTLC	STLC					LN12020				
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l				
Antimony	500	15	200.7	0.002	0.010	1	0.00580J				
Arsenic	500	5	200.7	0.005	0.025	1	ND				
Barium	10000	100	200.7	0.005	0.025	1	0.0149J	:			
Beryllium	75	0.75	200.7	0.001	0.005	1	ND				
Cadmium	100	1	200.7	0.001	0.005	1	ND		·		
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0145J				
Cobalt	8000	80	200.7	0.001	0.005	1	ND			_	
Copper	2500	25	200.7	0.008	0.040	1	ND				
Lead	1000	5	200.7	0.004	0.020	1	ND				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0189				
Nickel	2000	20	200.7	0.009	0.045	1	ND				
Selenium	100	I	200.7	0.009	0.045	1	ND				
Silver	500	5	200.7	0.004	0.020	ī	ND				
Thallium	700	7	200.7	0.004	0.020	1	0.00610J				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.205				
									-		

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst : KC

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/23/13

ANALYTICAL METHOD

USEPA 200.7

BATCH #:

\$TTLCW-8160 (LN11971)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

me/kg

mg/L

	a syamble b	รสเผล			(DIUP)				BS/BSID WIREG	RPD
#Metal:	RESULT	CONC	BS	%B8	CONC	BSD	%BSD	RED	EIVIT	LIME
Antimony	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Arsenic	ND	2.00	2.11	106	2.00	2.10	105	0.9%	70 - 130	< 30
Barium										
Beryllium	ND	2.00	2.10	105	2.00	2.10	105	0.0%	70 - 130	< 30
Cadmium	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Chromium (T)	ND	2.00	2.01	100	2.00	1.98	99.0	1.0%	70 - 130	< 30
Cobalt	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30.
Copper	ND	2.00	2.01	100	2.00	2.00	100	0.0%	70 - 130	< 30
Lead	ND	2.00	2.03	102	2.00	2.02	101	1.0%	70 - 130	< 30
Molybdenum	ND	2.00	1.98	99.0	2.00	1.97	98.5	0.5%	70 - 130	< 30
Nickel	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30
Selenium	ND	2.00	2.10	105	2.00	2.09	104	1.0%	70 - 130	< 30
Silver										
Thallium	ND	2.00	2.04	102	2.00	2.03	102	0.0%	70 - 130	< 30
Vanadium	ND	2.00	2.03	102	2.00	2.04	102	0.0%	70 - 130	< 30
Zinc	ND	2.00	2.03	102	2.00	2.03	102	0.0%	70 - 130	< 30

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

/	•
mo/L	
mg/L	
` -	1

METAL	ics results		Recovery	Acceptable Range
Antimony	1.04	1.00	104	85 - 115
Arsenic	4.19	4.00	105	85 - 115
Barium	3.89	4.00	97.2	85 - 115
Beryllium	0.105	0.100	105	85 - 115
Cadmium	0.100	0.100	100	85 - 115
Chromium (T)	0.404	0.400	101	85 - 115
Cobalt	1.02	1.00	102	85 - 115
Copper	0.496	0.500	99.2	85 - 115
Lead	1.04	1.00	104	85 - 115
Molybdenum				
Nickel	1.02	1.00	102	85 - 115
Selenium	4.25	4.00	106	85 - 115
Silver	0.100	0.100	100	85 - 115
Thallium	4.16	4.00	104	85 - 115
Vanadium	1.02	1.00	102	85 - 115
Zinc	1.02	1.00	102	85 - 115

Analyst: KC

Reviewed by: JMC 16(29(1)

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12183

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

200001-200003

OF THE CITY OF LOS ANGELES Power System **Integrated Support Services**

Report No. C12183 COC 13-2480 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T921 were submitted to the Environmental Laboratory on October 2, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267.

Date Completed: 10/28/2013 Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu K. Han

N. Perez FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By:

Date: 10/28/2013 Date: 10

Checked by:

APPROVED BY:

Interim Laboratory Manager **Environmental Laboratory**

Kevin Han

100001

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12183 COC 13-2480 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by
		Metals		10/23/13	Attachment #1	
		Boron		10/24/13	0.105 mg/L	
LN11732	Well# T921	Lithium	EPA 200.7	10/24/13	0.057 mg/L	Environmental Lab
		Magnesium		10/24/13	6.80 mg/L	
		Manganese		10/24/13	0.484 mg/L	
		Sodium		10/24/13	63.1 mg/L	
		Nitrite –N			0.44 mg/L	
LN11733	Well# T921	Chloride	EPA 300.0	10/2/13	25.1 mg/L	by
LINII/33	Well# 1921	Phosphate	EPA 300.0	10/2/13	<0.1 mg/L	Environmental Lab
		Sulfate			30.6 mg/L	
LN11734	Well# T921	TDS	SM 2540 C	10/4/13	290 mg/L	Environmental Lab
LN11735	Well# T921	Ammonia-N	SM 4500 NH3 G	10/16/13	0.42 mg/L	Bureau of Standards
LN11736	Well# T921	Alkalinity	SM 2320 B	10/10/13	188 mg/L	Environmental I ch
LMII/30	W CII# 1921	Carbonate	5WI 2320 B	10/10/13	88 mg/L	Environmental Lab
LN11737	Well# T921	TOC	SM 5310 C	10/15/13	2.6 mg/L	Environmental Lab
		pH	SM 4500 H+B	10/1/13	11.03	Field Personnel
LN11738	Well# T921	Specific Conductivity	EPA 120.1	10/1/13	732 us/cm	Field Personnel
		Turbidity	EPA 180.1	10/3/13	284 ntu	Environmental Lab

5/11/03 10/2/13 0:30m 10 2 13 2400-1-01-1-24C97 Assigned Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab Date BSL 1033 Result date date No. of Field Test: METALS, B, Li, Mg, Mn, Na TOC pH, Specific Conductivity, NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Required Analysis Turbidity N-SHN Approved by coc#: 13-2480 Analyst Shelf 500mL WATER 250 mL WATER 500 mL WATER Matrix. 500 mL WATER 40mL WATER 500 mL WATER 500 mL WATER Report C# 1185 Initial of Field Personnel: Water Operations Refinguished Sampled by: Received by Type Signati Ω. Δ G Refrigh. NONE NONE NONE H2S04 NON H2S04 HN03 DAY HOOFE Relinquished to Will The CALEST Organization / Div. B. STATISTA 71119 Chain of Custody Record Sample Location and Description Printed Name Department of Water and Power City of Los Angeles WELL # Saeed Jorat Sample Location OWENS LAKE MONITORING WELL Sampled by: Received by 一下れとから **JFB RM 1468** CHEMISTRY LOG NUMBERS | Sample Date | Sample Requested by. Priority Address. 2-4 Hrs Specify 1Day 2 Wks 4Wks Environmental Laboratory 1630|N. Main Street, Bldg 7 Los Angeles, CA. 90012 Chem Lab 69G Form # CCC (213) 367-7248/7399 (213) 367-7285 FAX Date & Time LA I TO 2 111734 CALITISC N1137 18113S LN 11733 WII1738 COC13- 5480

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2480

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

ALABORATORY) LOGINO								ESCRIPTIO	Nett		
LN11732	10/1/13	10/2/13	10/23/13				NS LAKE N				
						-					
<u> </u>							•				
	LIMIT	LIMIT]								
	TTLC	STLC					LN11732				
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l				
Antimony	500	15	200.7	0.002	0.010	1	ND				
Arsenic	500	5	200.7	0.005	0.025	1	0.0238J				
Barium	10000	100	200.7	0.005	0.025	1	0.111				
Beryllium	75	0.75	200.7	0.001	0.005	1	ND .			_	
Cadmium	100	1	200.7	0.001	0.005	1	0.00180J				
Chromium (T)	500	5	200.7	0.005	0.025	1	0.0867				
Cobalt	8000	80	200.7	0.001	0.005	1	0.00770				
Copper	2500	25	200.7	0.008	0.040	1	0.0182J				
Lead	1000	5	200.7	0.004	0.020	I	0.0233				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0496				·
Nickel	2000	20	200.7	0.009	0.045	1	0.0428J				
Selenium	100	1	200.7	0.009	0.045	1	0.0145 J				
Silver	500	5	200.7	0.004	0.020	1	ND				
Thallium	700	7	200.7	0.004	0.020	1	0.00420J				
Vanadium	2400	24	200.7	0.016	0.080	1	0.0811				
Zinc	5000	250	200.7	0.002	0.010	1	0.468				

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst : KC

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/08/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8110 (LN12010)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

mg/L

	Syoner	SPIGE			delere Sinke				BANGSUA MARGE	RHDF
METAL **	RESIDE	CONC	i.BS	%(B(S)	cione,	# BSD	//BSD	RPD	LIMIT	LİMIT
Antimony	ND	2	2.07	104	2	2.07	104	0.0%	70 - 130	< 30
Arsenic	ND	2	2.09	104	2	2.08	104	0.0%	70 - 130	< 30
Barium	·									
Beryllium	ND	2	2.01	100	2	2.03	102	2.0%	70 - 130	< 30
Cadmium	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Chromium (T)	ND	2	1.94	97.0	2	1.95	97.5	0.5%	70 - 130	< 30
Cobalt	ND ·	2	2.02	101	2	2.01	100	1.0%	70 - 130	< 30
Copper	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Lead	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Molybdenum	ND	2	1.98	99.0	2	1.98	99.0	0.0%	70 - 130	< 30
Nickel	ND	2	1.97	98.5	2	1.97	98.5	0.0%	70 - 130	< 30
Selenium	ND	2	2.04	102	2	2.04	102	0.0%	70 - 130	< 30
Silver								·		
Thallium	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Vanadium	ND	2	1.96	98.0	2	1.97	98.5	0.5%	70 - 130	< 30
Zinc	ND	2	2.05	102	2	2.02	101	1.0%	70 - 130	< 30
·						-				

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference

%BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL		r incupir viva i ija Silojojen i ili	θ/ ₆ . β. i.e. i.e. i.e. i.e. i.e. i.e. i.e.	Acceptable Range
Antimony	1.02	1	102	85 - 115
Arsenic	4.12	4	103	85 - 115
Barium	3.97	4	99.2	85 - 115
Beryllium	0.101	0.1	101	85 - 115
Cadmium	0.0990	0.1	99.0	85 - 115
Chromium (T)	0.392	0.4	98.0	85 - 115
Cobalt	1.01	1	101	85 - 115
Copper	0.491	0.5	98.2	85 - 115
Lead	1.03	1	103	85 - 115
Molybdenum				
Nickel	0.994	1	99.4	85 - 115
Selenium	4.10	4	102	85 - 115
Silver	0.0970	0.1	97.0	85 - 115
Thallium	4.10	4	102	85 - 115
Vanadium	0.982	1	98.2	85 - 115
Zinc	1.01	1	101	85 - 115
				- *

Analyst: KC

Reviewed by: 3411 10199113

DEPARTMENT OF WATER & POWER OF THE CITY OF LOS ANGELES Power System Integrated Support Services

ENVIRONMENTAL LABORATORY DATA REPORT

CLIENT:

SAEED JORAT

PROJECT:

OWENS LAKE MONITORING WELLS

REPORT NO.:

C12184

TABLE OF CONTENTS

SECTION

PAGE

COVER LETTER, COC, ANALYTE, SUMMARY TABLE

100001-100003

ATTACHMENT 1 METALS

S 200001-200003

OF THE CITY OF LOS ANGELES
Power System
Integrated Support Services

Report No. C12184 COC 13-2507 Page 1 of 2 w/ attachments

ENVIRONMENTAL LABORATORY DATA REPORT

Owens Lake Monitoring Wells Water Samples

Water samples from Owens Lake Monitoring Well T927 were submitted to the Environmental Laboratory on October 3, 2013 for the determination of their Metals, Nitrate-N, Chloride, Phosphate, Sulfate, Total Dissolved Solids (TDS), Ammonia-Nitrogen, Alkalinity, Carbonate, Total Organic Carbon (TOC), pH, Specific Conductivity, and Turbidity. See table on following page for sample information.

All quality assurance data indicate that the results for these samples are of acceptable quality.

If you have any questions, or if further information is required, please contact Ms. Nina Perez at (213) 367-7481 or Mr. Kevin Han at (213) 367-7267

Date Completed: 10/28/2013

Work Order No.: ZAC97

Job Card No.: J95000

Copies to: S. Jorat

N. Liu

K. Han

N. Perez

FileNet

Test Performed by: Environmental Lab,

Bureau of Standards

Report By:

NP

Date: 10/28/2013

Checked by:

L

Date: 10/19/17

APPROVED BY: Lan

Varin Han

Date

Interim Laboratory Manager

Environmental Laboratory

OF THE CITY OF LOS ANGELES

Power System Integrated Support Services Report No. C12184 COC 13-2507 Page 2 of 2 w/ attachments

Sample ID	Sample Description	Analysis Requested	Method	Analysis Date	Results	Analyzed by	
	Metals		10/23/13	Attachment #1	***		
.	LN11801 Well# T927	Boron		10/24/13	22.8 mg/L	Environmental Lab	
LN11801		Lithium	EPA 200.7	10/24/13	0.752 mg/L		
		Magnesium	211200	10/24/13	27.1 mg/L		
İ		Manganese		10/24/13	0.151 mg/L		
		Sodium		10/24/13	1790 mg/L		
	V. 11/1 TOO	Nitrite –N	-		<0.03 mg/L		
I NI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Chloride	ED 4 200 0	10/3/13	1727 mg/L		
LN11802 Well# T92	Well# 192/	Phosphate	EPA 300.0		<0.1 mg/L	Environmental Lab	
		Sulfate			806 mg/L		
LN11803	Well# T927	TDS	SM 2540 C	10/4/13	4490 mg/L	Environmental Lab	
LN11804	Well# T927	Ammonia-N	SM 4500 NH3 G	10/16/13	0.30 mg/L	Bureau of Standards	
LN11805	Well# T927	Alkalinity		10/10/13	172 mg/L	Environmental Lab	
	W 611# 1 32 /	Carbonate			0 mg/L		
LN11806	Well# T927	TOC	SM 5310 C	10/15/13	<0.4 mg/L	Environmental Lab	
		pН	SM 4500 H+B	10/2/13	6.95	Field Personnel	
LN11807 Well	Well# T92 7	Specific Conductivity	EPA 120.1	10/2/13	7010 us/cm	Field Personnel	
		Turbidity	EPA 180.1	10/3/13	4.42 ntu	Environmental Lab	

TOC pH, Specific Conductivity, METALS, B, Li, Mg, Mn, Na NO3*, CI, PO4*, SO4 Alkalinity, Carbonate * * SAMPLE WITH SHORT HOLDING TIME (48 HRS). PLEASE BRING IN SAMPLE BEFORE IT EXPIRES. Approved by coc#: 13-2507 Analyst 500ml. WATER 500 mL WATER Matrix WATER WATER Report C# 12/84
Refright 8/3 ct. Initial of Field Personnel: 250 mL 500 mL 500 mL 500 mL 40mL . Size. Relinquished by: Water Operations Sampled by: Received by ሲ Ω. ۵. G Ω Ω. Signati H2SO4 H2S04 NONE NONE NONE NONE HN03 STATANORT Organization / Div. Chain of Custody Record Sample Location and Description Sampled by: Saee & Jorat Department of Water and Power Printed Name しなり WELL# City of Los Angeles Tele Received by Saeed Jorat Sample Location OWENS LAKE MONITORING WELL Relinquished by: 2 PA WH LK MODEL PROPERTY 10-2-2019445 am Address. JFB RM 1468 ا (24 Hr) Sample Time Requested by. CHEMISTRY LOG NUMBERS | Sample Date Sp. Cond = D.01=5.9 Priority 2-4 Hrs 1Day 2 Wks 4Wks Environmental Laboratory 1630 N. Main Street, Bldg 7 Los Angeles, CA. 90012 (213) 367-7248/7399 (213) 367-7285 FAX Date & Time ナラン 80V 407 % O % 10801 4MQA 109003 COC13- 2507

12/01

9.45 Ca. 12

8, Ca.,

812

. Date:

Time

248-97

Page_1_ of_1_ No. of Field Test: 1C#95600 WO#

Assigned

Test Result

Required

Env Lab Env Lab Env Lab Env Lab Env Lab Env Lab

Turbidity

BSL

N-SHN

Analysis

ATTACHMENT #1

METALS

ENVIRONMENTAL LABORATORY DATA REPORT

COC 13-2507

ANALYTICAL RESULT FOR METALS

TTLC (Total Threshold Limit Concentration)
EPA Method 200.7

Sample Matrix: WATER

PROJECT: OWENS LAKE MW

LABORATORY							SAMPLE I	DSCRIPTG	() () () () () () () () () ()		
LN11801	10/3/13	10/3/13	10/23/13				L# T 927	HONDON HOUSE			
											_
											-
											-
	Γ	<u> </u>]						·		
	LIMIT TTLC	LIMIT STLC			T		LN11801				
METAL	(mg/kg)	(mg/l)	METHOD	MDL	RL	D. F.	mg/l				
Antimony	500	15	200.7	0.002	0.010	1	ND				
Arsenic	500	5	200.7	0.005	0.025	1	0.0426				
Barium	10000	100	200.7	0.005	0.025	1	ND				
Beryllium	75	0.75	200.7	0.001	0.005	1	ND				
Cadmium	100	1	200.7	0.001	0.005	1	ND				
Chromium (T)	500	5	200.7	0.005	0.025	1	0.00610J				
Cobalt	8000	80	200.7	0.001	0.005	1	ND				
Copper	2500	25	200.7	0.008	0.040	1	ND				
Lead	1000	5	200.7	0.004	0.020	1	0.00690J				
Molybdenum	3500	350	200.7	0.001	0.005	1	0.0684				
Nickel	2000	20	200.7	0.009	0.045	1	0.0374J				
Selenium	100	1	200.7	0.009	0.045	1	ND				
Silver	500	5	200.7	0.004	0.020	1	0.00620J				
Thallium	700	7	200.7	0.004	0.020	1	ND				
Vanadium	2400	24	200.7	0.016	0.080	1	ND				
Zinc	5000	250	200.7	0.002	0.010	1	0.116				
					-						

ND - Not Detected; below method detection limit

MDL - Method Detection Limit

R.L. - Report Limit

D. F. - Dilution Factor

** - exceed TTLC limit

* - exceed 10x STLC limit

J - concentration above MDL and below RL

Analyst: KC

QA/QC Report

I. Blank Spike (BS) / Blank Spike Duplicate (BSD)

DATE ANALYZED: 10/08/13

ANALYTICAL METHOD

USEPA 200.7

BATCH#:

\$TTLCW-8110 (LN12010)

LAB SAMPLE I.D.: BLANK

UNIT: (Circle One)

mg/kg

100000000000000000000000000000000000000	SAMBLE .	ŠRKE		100	(DUP) SPIKE				als/aside	
METAL	RESULT	- CONC	B BS	7/BS	CONC	HSD	% BS D	Rep	LIME	TIMEL
Antimony	ND	2	2.07	104	2	2.07	104	0.0%	70 - 130	< 30
Arsenic	ND	2	2.09	104	2	2.08	104	0.0%	70 - 130	< 30
Barium		,							`	
Beryllium	ND	2	2.01	100	. 2	2.03	102	2.0%	70 - 130	< 30
Cadmium	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Chromium (T)	ND	2	1.94	97.0	2	1.95	97.5	0.5%	70 - 130	< 30
Cobalt	ND	2	2.02	101	2	2.01	100	1.0%	70 - 130	< 30
Copper	ND	2	1.96	98.0	2	1.96	98.0	0.0%	70 - 130	< 30
Lead	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Molybdenum	ND	2	1.98	99.0	2	1.98	99.0	0.0%	70 - 130	< 30
Nickel	ND	2	1.97	98.5	2	1.97	98.5	0.0%	70 - 130	< 30
Selenium	ND	2	2.04	102	2	2.04	102	0.0%	70 - 130	< 30
Silver										
Thallium	ND	2	2.02	101	2	2.02	101	0.0%	70 - 130	< 30
Vanadium	ND	2	1.96	98.0	2	1.97	98.5	0.5%	70 - 130	< 30
Zinc	ND	2	2.05	102	2	2.02	101	1.0%	70 - 130	< 30
				-			- i			

BS = Blank Spike BSD = Blank Spike Duplicate %BS = Percent Recovery of Blank Spike

RPD = Relative Percent Difference %BSD = Percent Recovery of Blank Spike Duplicate

Analyst: KC

II. Calibration and Laboratory Quality Control Check Sample (LCS)

DATE ANALYZED: 10/23/13

ANALYTICAL

USEPA 200.7

SUPPLY SOURCE: Environmental Express

LAB LCS I.D.:

Q8789

LOT NUMBER:

1314823

UNIT: (Circle One) mg/kg

METAL		irus vaisio ng/L		Acceptable Range
Antimony	1.02	1	102	85 - 115
Arsenic	4.12	4	103	85 - 115
Barium	3.97	4	99.2	85 - 115
Beryllium	0.101	0.1	101	85 - 115
Cadmium	0.0990	0.1	99.0	85 - 115
Chromium (T)	0.392	0.4	98.0	85 - 115
Cobalt	1.01	1	101	85 - 115
Copper	0.491	0.5	98.2	85 - 115
Lead	1.03	1	103	85 - 115
Molybdenum				
Nickel	0.994	1	99.4	85 - 115
Selenium	4.10	4	102	85 - 115
Silver	0.0970	0.1	97.0	85 - 115
Thallium	4.10	4	102	85 - 115
Vanadium	0.982	1	98.2	85 - 115
Zinc	1.01	1	101	85 - 115

Analyst: KC

Reviewed by:

ANK 10/89/13