

LA100 Equity Strategies
Steering Committee Meeting #11
September 21, 2022

Los Angeles Department of Water & Power (LADWP) Project Leads

Simon Zewdu
Director
Transmission Planning,
Regulatory, and Innovation Division

Pjoy T. Chua, P.E.
Assistant Director
Transmission Planning, Regulatory,
and Innovation Division

Steve Baule
Utility Administrator
LA100 Equity Strategies Oversight
& UCLA Contract Administrator

Stephanie SpicerCommunity Affairs Manager

Agenda

Start Time	Item	
10:00 a.m.	Welcome	
10:05 a.m.	Meeting Purpose and Agenda Overview	
10:10 a.m.	Steering Committee Check In and Spotlight: Climate Resolve	
10:30 a.m.	Report on Themes from Steering Committee Check Ins	
10:40 a.m.	LADWP Equity, Diversity and Inclusion Overview	
11:10 a.m.	Community Listening Sessions Update	
11:20 a.m.	Air Quality and Health: Update on Medium- and Heavy- Duty Vehicle Emissions Impact Modeling	
11:50 a.m.	How LADWP Will Use the Output Metrics	
11:55 a.m.	Wrap Up and Next Steps	

Our Guide for Productive Meetings

Raise your hand to join the conversation (less chat entries, more talking)

Help to make sure that everyone has equal time to contribute

Keep input concise and focused so that others have time to participate

Actively listen to others to understand their perspectives

Offer ideas to address others' questions and concerns

Steering Committee Roster

Organization	Representative
Alliance of River Communities (ARC)	Vincent Montalvo
City of LA Climate Emergency Mobilization Office (CEMO)	Marta Segura, Rebecca Guerra
Climate Resolve	Jonathan Parfrey, Bryn Lindblad
Community Build, Inc.	Robert Sausedo
DWP-NC MOU Oversight Committee	Tony Wilkinson, Jack Humphreville
Enterprise Community Partners	Jimar Wilson, Michael Claproth
Esperanza Community Housing Corporation	Nancy Halpern Ibrahim
Los Angeles Alliance for a New Economy (LAANE)	Kameron Hurt, Estuardo Mazariegos
Move LA	Denny Zane, Eli Lipmen
Pacific Asian Consortium in Employment (PACE)	Celia Andrade, Susan Apeles
Pacoima Beautiful	Veronica Padilla Campos, Melisa Walk
RePower LA	Michele Hasson, Roselyn Tovar
The South Los Angeles Transit Empowerment Zone (SLATE-Z)	Zahirah Mann, April Sandifer
South LA Alliance of Neighborhood Councils	Thryeris Mason
Strategic Concepts in Organizing and Policy Education (SCOPE)	Agustín Cabrera, Tiffany Wong

Including Future Agenda Items

Tentative Schedule

This Meeting

Project Metrics

- Steering Committee member checkin, spotlight, and conversation summary
- LADWP diversity, equity, & inclusion
- · Listening session update
- · Air quality and health

October 19, 2022

- Steering Committee member check-in
- Household energy modeling approach
- · Shared solar siting
- Energy Atlas

Future Meetings

- Transportation EV and charging infrastructure
- Rate analysis and affordability
- Workforce development
- · Reliability and resilience
- Listening sessions

Check-in:

In 10 words or less, what is your observation of the recent heat wave and energy use?

Steering Committee Members Spotlight

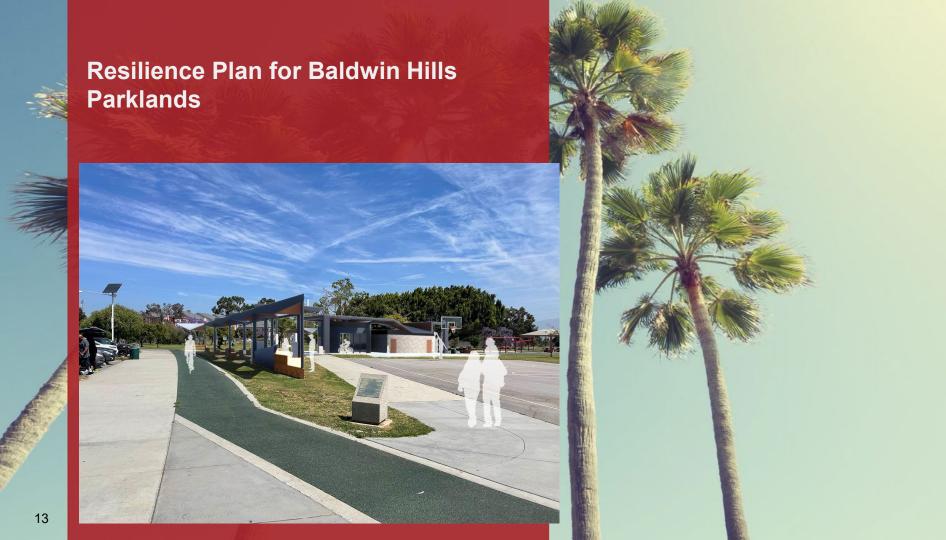
Climate Resolve

LA100 Equity Strategies September 21, 2022

Social Equity is at the heart of our work. Everything we do is viewed with a social justice / equity lens.

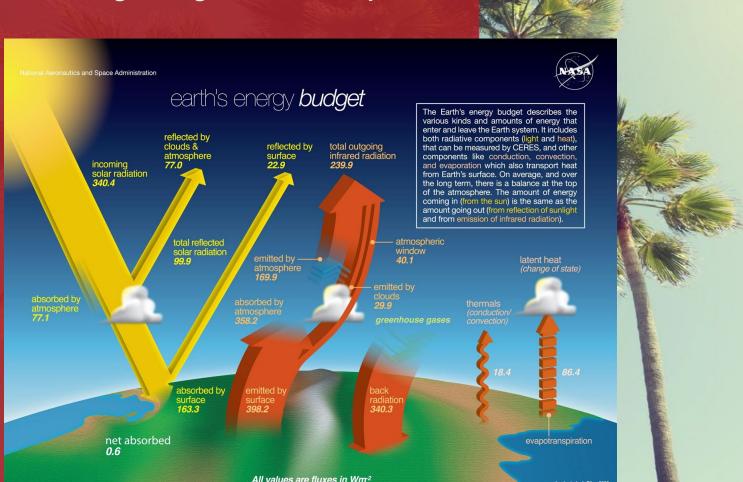
- Founded in 2010
- Staff of 25
- Offices at LA Cleantech Incubator

Best known for:


- Urban cooling advocacy and implementation projects
- . Inclusive project development
- Public transportation advocacy
- Stopping sprawl
- Ambitious as in taking risks for good things

Resilience Hub at the Boyle Heights Arts Conservatory

Cool Streets



PRE

16

Bouncing Sunlight Back into Space

Loads more:

- Advocate on state laws & regs
- Climate Action & Adaptation Plans
- Lawsuits: HDC & Tejon
- Zero emission transit to Dodger Stadium
- Tree planting
- Public engagement on energy efficiency & water conservation
- Manage GHG mitigation projects
- Research assistance
- Communications

Report on Themes from Steering Committee Member Check-Ins

Joan Isaacson, Facilitator, Kearns & West

Major Themes from Check-Ins with Steering Committee Members

Overall Impressions of Steering Committee Process

- General positive feedback
- Opportunities for more substantive involvement

Expectations

- Relevant
- Action vs information
- More focus on existing challenges

Process

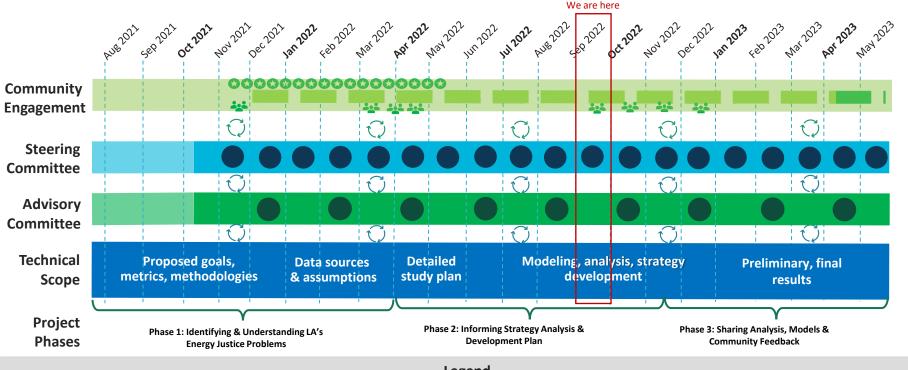
- Process roadmap and more info on outcomes needed
- Overrepresentation of dominant voices
- Subgroups suggestion
- Repetitive discussions sometimes
- Meeting lengths ok
- More pre-read materials
- Meeting follow-up

Major Themes from Check-Ins with Steering Committee Members

Meeting Format

- Breakout rooms are productive
- More discussion and co-creation
- More participation tools
- Need set of community agreements
- Mix in in-person/hybrid meetings

Technical Level of Meeting Discussions


- Becoming increasingly technical
- Technical level can create barriers to participation
- Unpack technical info more

Where are we in the process?

LA100 EQUITY STRATEGIES: TIMELINE & FRAMEWORK

LA100 Equity Strategies Progress Dashboard

What Has Been Done and Where Are We Today?

October-January-March April-June July-September October-January-March April-May 2022 2022 2022 December 2022 2023 2023 December 2021 Recognition **Justice** Interviews and literature search Final report on LA's current energy inequities Draft analysis of LA's current energy inequities Recommendations to increase equity in Recommendations to increase equity in future LADWP programs existing LADWP programs **Procedural Justice** 10 of 19 monthly Steering Committee meetings 9 remaining monthly Steering Committee meetings and 5 of 9 bi-monthly Advisory Committee and 4 remaining bi-monthly Advisory Committee meetings meetings 6 of 16 listening sessions 10 remaining listening sessions 2 community meetings Educational materials for community outreach Distribution **Justice** Data sources and assumptions Equity strategies modeling Methodologies Draft pathway recommendations Proposed goals and metrics Final pathway recommendations

24

LA100 Equity Strategies: Where Are We Going?

Developing Energy Justice Strategies

LA100 Equity Strategies will co-develop **practical, implementation-ready strategies** intended to increase **energy equity outcomes** on **LA's road to 100% clean energy.**

LADWP Diversity, Equity and Inclusion Overview

Robert Meteau, Andrew Kwok, Mudia Aimiuwu, I ADWP

LADWP Leadership

Robert J. Meteau
Deputy Chief
Diversity, Equity & Inclusion Officer

Andrew Kwok
Assistant
Diversity, Equity & Inclusion Officer

Mudia Aimiuwu
Data Analyst
Diversity, Equity & Inclusion Office

Equity Metrics Data Initiative

Equity Core Category	Metrics
Water & Power Infrastructure Investment	 Water Quality Complaints Water System Probability of Failure & Planned Replacements System Average Interruption Frequency Index (SAIFI) & System Average Interruption Duration Index (SAIDI) Power System Reliability Program (PSRP) – Pole, Transformer, Cable Replacements
Customer Incentive Programs/Services	 Rain Barrel/Cistern/Water Tank Rebates Turf Removal Rebates Tree Canopy Program Commercial Direct Install Program Home Energy Improvement Program Refrigerator Exchange Program Consumer Rebate Program Electric Vehicle Infrastructure Low Income & Lifeline Programs
Procurement	14. LADWP SBE/DVBE Program
Employment	15. New Hire/Promotion Demographics

Community Listening Sessions Update

Paty Romero-Lankao, NREL

From the What to the How

Listening Sessions: Spaces of Collaboration with Community Participants

The What

First Round:

We asked five small groups of Angelenos <u>what</u> energy justice means to them, including their:

- (1) **vision** for a just energy future in their community;
- (2) understandings of factors influencing energy inequities in their community; and
- (3) suggested energy strategies to redress these inequities.

The How

Second Round:

The next 10 listening sessions aim to **understand** *how* **to**:

- (1) rectify the challenges shared in our last sessions and
- (2) achieve the energy equity goals community members have outlined.

Listening Sessions

Space of Collaboration

Continuing the Community Feedback Loop

- Content co-development
- Recruitment (8-10 local residents will participate each community-specific session)
- In-Person Hosting

Partnering with SC Members to Co-Develop each Session

- Continue our feedback loop with community members
- Create a collaborative space where participants can workshop our understanding of past feedback

Listening Sessions

Round Two

10 In-Person Listening Sessions

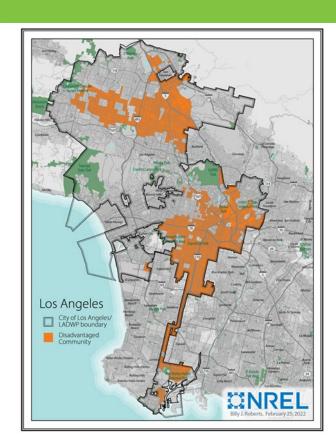
- Two sessions in September 2022
 - —Communities of Focus: San Fernando Valley, South LA #1
- Three sessions in October 2022
 - —Communities of Focus: South LA #2, East LA, Harbor
- Three Sessions in November 2022
 - —Communities of Focus: South LA #1, South LA #2, San Fernando Valley
- Two Sessions in December 2022
 - —Communities of Focus: East LA, Harbor

Air Quality and Health

Update on medium- and heavy-duty vehicle emissions impact modeling and output metrics
Garvin Heath, NREL
Yifang Zhu, UCLA

Air Quality & Health Modeling Overview

Questions to Be Answered with NREL and UCLA collaboration:


- Electrification of which types of vehicles (light-, medium-, and heavy-duty) and where would provide the greatest health benefits in disadvantaged communities?
- Will *vehicle electrification* provide greater air quality and health improvements in disadvantaged communities?

Outcomes:

 Answers will inform vehicle electrification incentives and program targeting, and infrastructure investment locations and sequencing.

Steering Committee Guidance:

- Which neighborhoods and roads should be prioritized?
 - Feedback from Steering Committee meeting #5: major freeways, Ports/LAX corridors, Wilmington, Pacoima, South LA

Air Quality & Health Modeling Overview

UCLA Scenarios

- Zero-Emission Vehicle disparity scenario
- Zero-Emission Vehicle equity scenario
 - Light-duty
 - Light-, medium-, & heavy-duty

Air Quality Modeling

 Model ambient PM2.5 and O3 in 2035 using WRF-Chem (high resolution of about 1 km by 1 km)

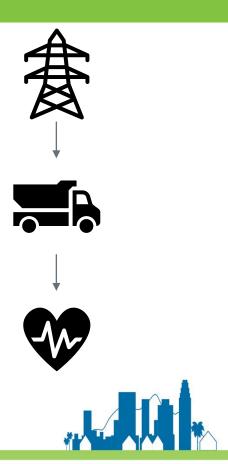
NREL Scenarios

- UCLA-developed scenarios
- Medium- and heavy-duty vehicle classes at different electrification levels across a wide range
- Each scenario in many different LA neighborhoods,

Air Quality Modeling

Near-roadway air quality model (<100 m spatial resolution)

Health Assessment


- Racial/ethnic specific baseline mortality rates
- Mortality due to PM_{2,5}, due to O₃
- Monetized health benefits at a community level

Goal of today's presentation

Discuss:

- Which disadvantaged community (DAC) census tracts to use for sampling and analysis
 - Some DAC tracts are affected by traffic related pollution more than others
 - Develop a "Traffic-Air Quality DAC" (TAQ-DAC) definition based on subset of CalEnviroScreen indicators and Steering Committee feedback
- NREL update
 - Traffic activity and emission rates in the modeling year (2035)
 - Air quality modeling and equity analysis methods
- UCLA update
 - Electric Vehicle Miles Travelled (eVMT) in 2035
 - Emissions projection in 2035

Traffic-Air Quality Disadvantaged Communities (TAQ-DAC)

Current set of indicators used in CalEnviroScreen 4.0 or its derivatives

Pollution Burden		Population Characteristics		
Exposure	 Ozone and particulate matter (PM_{2.5}) concentration Diesel particulate matter (PM) emissions Drinking water contamination Children's lead risk from housing Pesticide use Toxic release from facilities Traffic impacts 	Sensitive population	 Asthma emergency department visits Cardiovascular disease Low birth-weight infants 	
Environmental effects	 Cleanup sites Groundwater threats Hazardous waste Impaired water bodies Solid waste sites and facilities 	Socioeconomic factors	 Educational attainment Housing-burdened low-income households Linguistic isolation Poverty Unemployment 	

Only some indicators (marked here in red) are traffic related

Which DAC tracts are more affected by traffic-related air pollution?

Pollution Burden		Population Characteristics		
Exposure	 Ozone concentration PM_{2.5} concentration Diesel PM emissions Traffic impacts 	Sensitive population	Asthma emergency department visitsCardiovascular diseaseLow birth-weight infants	

- How do we select which of these indicators to analyze for traffic-related air quality-specific benefits?
- Two obvious choices: "traffic impacts" and "diesel PM emissions"
- Does including other indicators provide more insight?

How do we identify tracts most affected by traffic air pollution? (1)

IDENTIFY

- Consider all traffic/air quality-related indicators in CalEnviroScreen (7)
- Fix two indicators
 - traffic impacts
 - diesel PM emissions
- Combine with other population and pollution indicators in all combinations

MODEL

- Using CalEnviroScreen
 4.0 methodology,
 calculate score for each
 tract in California
- Derive a traffic/AQaffected disadvantaged community classification for each combination

ANALYZE and SELECT

- Analyze tracts
 (intersecting with
 CalEnviroScreen 4.0) for
 all 32 combinations for
 their scores
- Select the combination that yields highest median CalEnviroScreen percentile score

How do we identify tracts most affected by traffic air pollution? (2)

O₃, Asthma, Cardio.,

LBW

Fixed Indicators

- Traffic impacts
- Diesel particulate matter emissions

Varied Indicators

- Ozone (O₃)
 concentration
- PM_{2.5} concentration
- Asthma emergency department visits
- Cardiovascular disease
- Low birth-weight infants

Indicator combination	Total tracts with percentile >75 Tracts	Tracts common w/CalEnviro Screen
Traffic, Diesel	486	260
Traffic, Diesel, PM _{2.5} , O ₃	705	397
Traffic, Diesel, PM _{2.5} ,	567	481

Lower number of tracts is beneficial so we can focus sampling

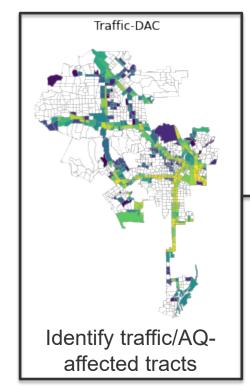
Analyze each combination

How do we identify tracts most affected by traffic air pollution? (2)

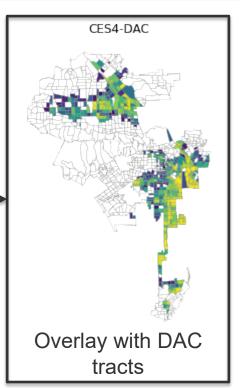
Fixed Indicators

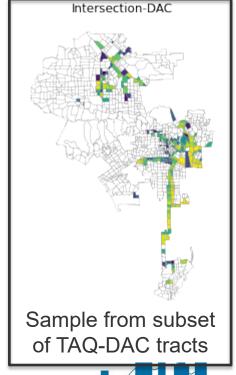
- Traffic impacts
- Diesel particulate matter emissions

Varied Indicators

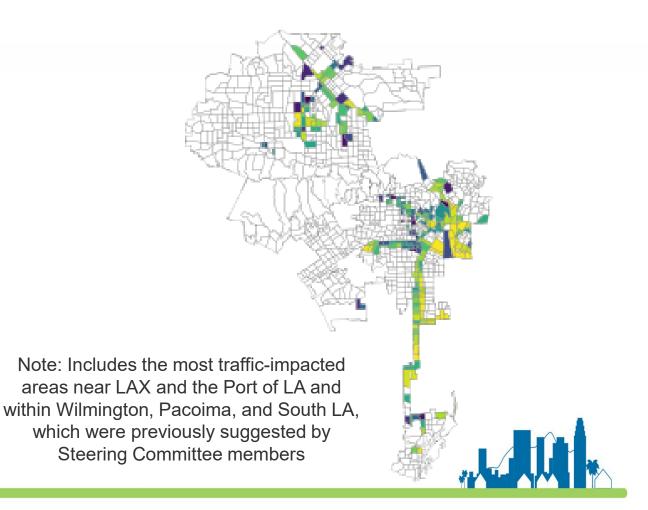

- Ozone (O₃)
 concentration
- PM_{2.5} concentration
- Asthma emergency department visits
- Cardiovascular disease
- Low birth-weight infants

	Indicator combination	Total tracts with percentile >75 Tracts	Tracts common w/CalEnviro Screen	
Analyze each	Traffic, Diesel	486	260	
combination				
<i>y</i>	Traffic, Diesel, PM _{2.5} , O ₃	705	397	
	Traffic, Diesel, PM _{2.5} , O ₃ , Asthma, Cardio., LBW	567	481	


Lower number of tracts is beneficial so we can focus sampling

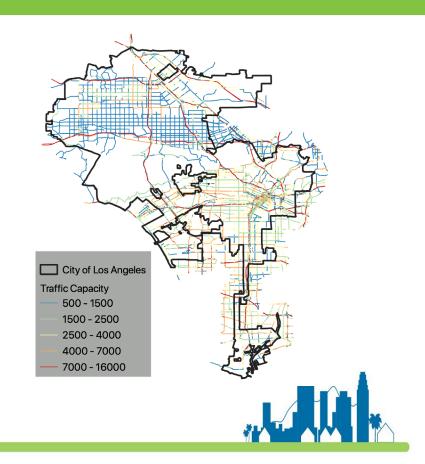

Traffic-affected DACs for sampling and analysis

select only from

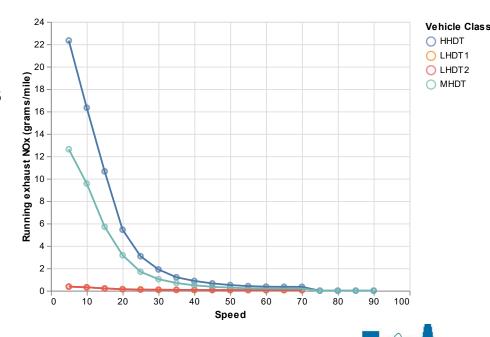


Feedback on traffic/AQaffected DAC analysis approach

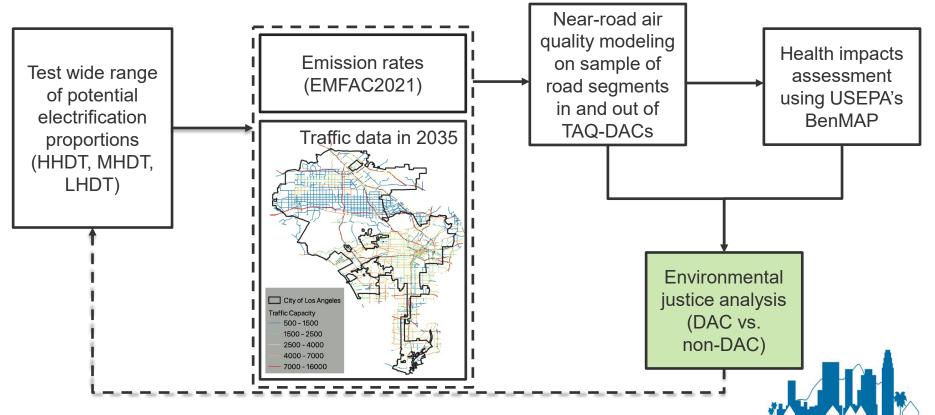
Intersection-DAC



NREL updates

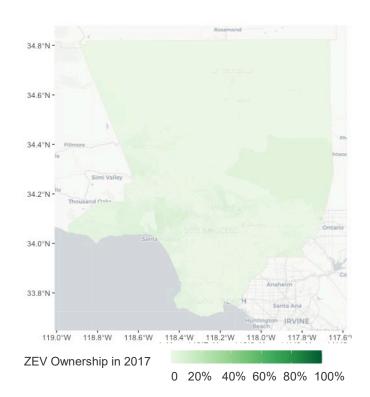

Traffic Activity Data

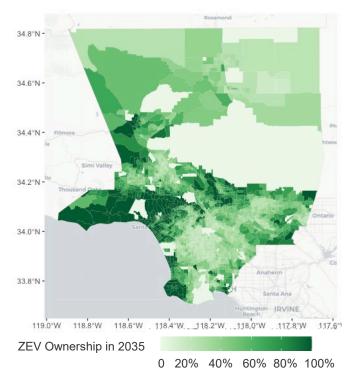
- We are expecting to use vehicle activity projection data based on UCLA Mobility Lab travel demand modeling.
- Vehicle types included:
 - light heavy-duty trucks (LHDT)
 - medium heavy-duty trucks (MHDT)
 - heavy-heavy duty trucks (HHDT)
 - Light duty vehicles (LDVs)
- UCLA's dynamic model is likely better than Sothern California Association of Governments model which is static modeling
 - Can affect parameters such as speed and congestion which can affect emissions



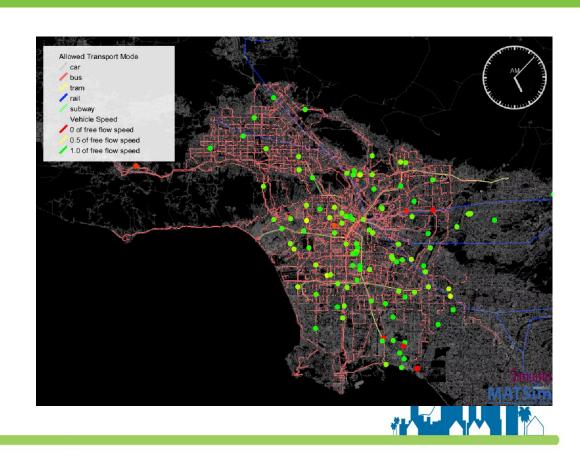
Emission rates for different vehicles in LA region

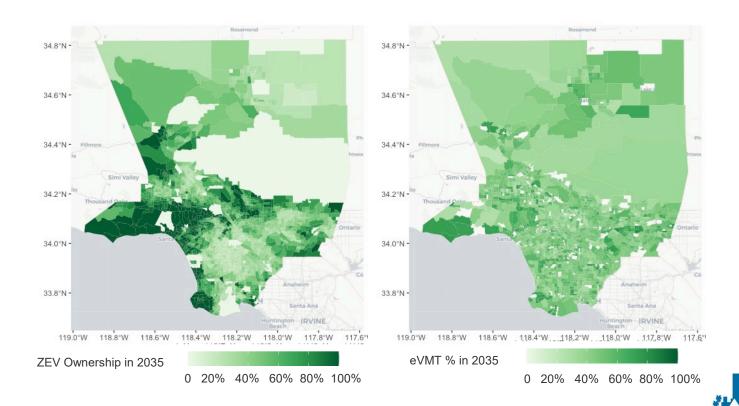
- Emission rates will be based on the most recent version of California Air Resources Board (CARB)'s EMFAC model
- Emission rates depends on factors such as these which are included in the UCLA model:
 - Vehicle type,
 - Fuel type,
 - Speed
- Emission factors for various pollutants such as nitrogen oxides (NOx), particulate matter (PM_{2.5}) (including brake and tire wear)


Putting it all together: strategic insights from health and EJ analysis



UCLA Updates


Zero Emissions Vehicles (ZEV) Percentage Map in 2017 and 2035



Integrated Transportation Model

- Simulating explicit vehicle movement in a multimodal network with the congestion impact
- Incorporating all types of vehicle
 - Passenger cars
 - Light/Medium/Heavy duty trucks
 - Transit vehicles

Zero Emissions Vehicle Ownership vs. Electric Vehicle Miles Traveled (eVMT)% in 2035

Scenarios

	Scenario 1	Scenario 2	Scenario 3			
Name	2035 ZEV Disparity	2035 ZEV Equity (more MD-HD) (MSS)				
Energy Profile	LA100 Early & No Biofuel – 100% Clean Energy					
	On-road Transportation Electrification Profile					
Light-duty	50%	50%	50%			
Medium-duty	19%	19%	22%			
Heavy-duty	10%	10%	39%			
School and urban buses	100%	100%	100%			
	On-road Transportation Emission Spatial Distribution					
Passenger Vehicle Medium-duty Heavy-duty School and urban buses	Emission reduction map based on (1) ZEV ownership and (2) the MATSim simulated trips	Equally distributed	Equally distributed			
	ZEV Fleet Profile (LDV / MDV / HDV)					
PHEV		25% / 0% / 0%				
BEV	67% / 100% / 100%					
FCEV	8% / 100% / 100%					
	Off-road Transportation					
	EMFAC 2035 Original	EMFAC 2035 Original	MSS			
	Oil & Gas Industry					
Demand Reduction	Scale down based on ZEV population					

MSS: Mobile Source

Strategy

PHEV: Plug-in Hybrid

Electric Vehicle

BEV: Battery Electric

Vehicle

FCEV: Fuel-cell Electric

Vehicle

LDV: Light-duty Vehicle

MDV: Medium-duty

Vehicle

HDV: Heavy-duty

Vehicle

LA County Emission Inventory Change (2017 vs. 2035)

Scenarios	со	NH ₃	NOx	PM ₁₀	PM _{2.5}	ROG	SOx
BASE - 2017 (tons / day)	1000	46	270	89	34	303	13
ZEV – 2035 (tons / day)	452	47	143	89	32	217	12
MSS - 2035 (tons / day)	431	46	101	89	31	216	12
Scenario Comparison							
(ZEV-BASE)/BASE	-55%	1.5%	-47%	0.6%	-5.7%	-28%	-4.0%
(MSS-ZEV)/ZEV	-4.5%	-1.3%	-29%	-0.3%	-1.6%	-0.4%	-0.8%

Q&A

Air Quality & Health Equity Strategies Development

Megan Day, NREL Simon Zewdu, LADWP

Output Metrics and Enabled Equity Strategy Analysis – Air Quality and Health

Medium- & Heavy-Duty Vehicle (MHDV) Sector Output Metric

Changes to concentration of air pollutants (PM_{2.5} and NOx) in different parts of the city under different truck electrification strategies

Impact of pollutant changes in different parts of the city on mortality and morbidity

Example of Enabled Equity Strategies

- Identification of MHDV electrification strategies that result in pollutant concentration/health changes that benefit traffic-impacted disadvantaged communities, including
 - Vehicle type (e.g., would electrifying delivery trucks lead to greater air pollutant/health reduction than garbage trucks?)
 - Targeted MHDV charging infrastructure locations
- Potential implementation partners
- Comparison to benefits from electrification of light-duty vehicles to inform investment and program prioritization

Going Forward *Tentative*

Steering Committee Meetings

October 19, 2022 Virtual

- Steering Committee member check-in and spotlight
- Household energy modeling approach
- Shared solar siting analysis
- Energy Atlas

Subsequent Meetings

- Third Wednesday of each month, 10:00 a.m. 12:00 p.m. PT
- Virtual for near-term

What would you like to discuss in upcoming meetings?

Drop your agenda suggestions in the chat!

Thank you!