Achieving Economy-wide Deep Greenhouse Gas Reductions

LADWP 100\% Renewables/Clean Energy Study Advisory Group

> Kick-Off Meeting

Friday, June 23, 2017
Arne Olson; Partner
Nick Schlag, Senior Managing Consultant

(자
 Agenda

+ About E3
+ Decarbonization Modeling Background
+ The California PATHWAYS Study
+ Key conclusions for DWP 100\% Clean Energy Study

Source: National Center for Atmospheric Research, National Science Foundation

About Energy and Environmental Economics, I nc. (E3)

- Founded in 1989, E3 is an industry leading consultancy in North America with a growing international presence
- E3 operates at the nexus of energy, environment and economics
- Our team employs a unique combination of economic analysis, modeling acumen and deep institutional insight to solve complex problems for a diverse client base including critical thought leadership

E3's PATHWAYS studies of deep decarbonization

+ Recent projects evaluate economy-wide GHG reduction goals in 2030 and 2050 with a focus on implications in the electricity sector

Generating capacity by fuel type

350,000		
	-	- Imports
300,000		- Rooftop PV
250,000		- Wind
$\sum_{i} 200,000$		- Solar
		- Geothermal
		- Biomass
	\square	- Hydro
100,000	.	- Natural Gas with CCS
50,000		- Natural Gas
		- Coal
0		- Nuclear
	20152020202520302035204020452050	- CHP

E3 has completed numerous studies of high renewable penetration

+ E3 has worked with a wide range of clients to understand the challenges of renewable integration at high penetrations:
- California ISO: ongoing support to improve modeling \& inform renewable integration solutions
- Los Angeles Dept. of Water \& Power: ongoing support for study considering 100\% RPS
- Hawaiian Electric Company: technical modeling support in filing of Preferred Energy Supply Plan to reach 100\% renewables by 2045
- California PUC: ongoing support in development of Integrated Resource Planning considering renewable penetrations of up to 65% by 2030
- Portland General Electric: analysis of flexibility challenges at wind penetrations up to 50% by 2030 to support 2014 Integrated Resource Plan
- Western Electricity Coordinating Council: assessment of flexibility challenges at west-wide renewable penetrations of 40% by 2026
- California Utilities: landmark 2014 study of feasibility and implications of achieving a 50% RPS by 2030 conducted for five largest California utilities

DECARBONIZATION MODELING BACKGROUND

Deep reductions in greenhouse gas emissions are called for globally

+ The 2016 Paris agreement committed industrialized nations to 80\% reductions below 1990 levels by 2050
- Roughly consistent with IPCC/UNFCC goal of keeping global average temperature rise within $2^{\circ} \mathrm{C}$ to avert catastrophic climate change
+ If current trends continue, $2^{\circ} \mathrm{C}$ aggregate warming will be exceeded

Source: NOAA, https://www.ncdc.noaa.gov/monitoringreferences/faq/indicators.php Global annual average temperature measured over land and oceans. Red bars indicate temperatures above and blue bars indicate temperatures below the 1901-2000 average temperature.

Global Land and Ocean Temperature Anomalies, January-December

Source: IPCC Global Assessment Report 5, SPM. 07

2012 Science Paper: "The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050"

+ What is the impact of the electric generation mix on the cost and feasibility of a low-carbon future in CA?
+ Compared renewables, nuclear, carbon capture and storage
+ Demonstrated a feasible pathway to 2050 goal with focus on electrification
+ Led to development of E3 PATHWAYS Model

"The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050:
The Pivotal Role of Electricity," Williams et al, Science (2012)

E3 PATHWAYS Model

+ Bottom-up, user-defined, scenarios test "what if" questions
+ Economy-wide model captures interactions between sectors \& pathdependencies
+ Detailed treatment of stock rollover
+ Hourly treatment of electric sector
+ Tracks capital investments and fuel costs over time

Heavy-duty Vehicle Stock by Type: Electrification Scenario

2014: UN Deep Decarbonization Pathways Project

+ UN Deep Decarbonization Pathways Project
- 17 countries, $>70 \%$ of current global GHG emissions
- Scenarios to keep global warming below 2 degrees C
+ E3 was lead author of the U.S. country report using PATHWAYS model

$\overline{\text { rconomy }}$
Blueprints for Taming the Climate Crisis

UN issued with roadmap on how to avoid climate catastrophe
Report is the first of its kind to prescribe concrete actions that the
biggest 15 economies must take to keep warming below 2C

UN: Avoiding climate disaster is tough but feasible

SCIENTIFIC AMERICAN ${ }^{\text {w }}$

Clean Energy to Stave Off
Catastrophic Climate Change Possible by 2050, Barely
The world is not on track to ke
line whe tremendous effort
DDRI
圈SciencesPo.

Key finding: Decarbonization can be consistent with economy growth

+ The Deep Decarbonization Pathways Project (DDPP) study found that deep emission reductions could be achieved in all countries even as population and GDP continue to grow

Figure 2. GDP and energy-related emissions per capita across the 16 countries

[^0]
Different strategies to achieve low-carbon electricity

+ DDPP country teams evaluated a range of scenarios with a mix of electricity strategies
- Renewables, nuclear, fossil fuels with carbon capture and storage (CCS) all play a role in most countries
- Renewable penetration range from $40-90 \%$ by 2050

Figure 6.11. Electricity generation mix in 2050

Source: Deep Decarbonization Pathways Project Synthesis Report

CALI FORNI A PATHWAYS STUDY

2014-2015: The California PATHWAYS Project

+ Purpose
- To evaluate the feasibility and cost of a range of GHG reduction scenarios in California (prior to development of Governor's 2030 goals)
+ Project sponsors
- California Air Resources Board, Energy Commission, Public Utilities Commission, Independent System Operator \& the Governor's Office
- Additional funding provided by the Energy Foundation
+ Team
- Energy \& Environmental Economics with support from LBNL

Study results: https://www.ethree.com/public_proceedings/summary-california-state-agencies-pathways-project-long-term-greenhouse-gas-reduction-scenarios/

California's Climate Commitments

Total California GHG Emissions

How does CA compare to the U.S.?

GHG emissions per capita

US: 16.95 MT
CA: 9.23 MT

Share of total GHG emissions by sector in the United States (6.2 billion tons) and California (442 million tons)

+ California has significantly lower GHG emissions per capita
+ Transportation emissions are a larger share in California
+ Electricity emissions are a smaller share in California excluded from the chart) and California GHG Inventory 2016 Edition

Key scenario assumptions

+ Continuation of current lifestyle \& growth of economic activity
+ Technological conservativism, plus key emerging technologies
+ Natural retirement of equipment (not early replacement)
+ Biomass use is limited based on DOE estimate of sustainable supply
+ Advanced biofuels are assumed to have net-zero carbon emissions
+ Electricity planning and operational assumptions maintain hourly balance of electricity supply \& demand

Decarbonizing CA's economy depends on four energy transitions

3. Decarbonize electricity

Emissions intensity
(tCO2e/MWh)

4. Decarbonize fuels (liquid \& gas)

Emissions intensity (tCO2/EJ)

1. Doubling of current energy efficiency goals \& reduced vehicle miles traveled

+ Higher Efficiency in Buildings \& I ndustry
- Approximate doubling of current plans for EE savings
- Largest EE savings assumed to come from commercial LED lighting, more efficient equipment \& appliances

+ Higher Efficiency of Vehicles and Reduced Demand for Transportation Services

- 8\% reduction in vehicles miles traveled through smart growth policies and demographic trends by 2030
- Sustained vehicle efficiency improvements
- Petroleum refining and oil \& gas extraction energy use decline proportionally with demand for liquid fossil fuels

2. Large increase in zero-emission and plug-in hybrid vehicles by 2030

+ Number of light duty fuel cell vehicles (FCV), battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV) on the road in CA in 2025 and 2030

2. I ncrease in Building Electrification

중

+ Transition toward electric heat pumps in buildings in Compliant Scenarios begins in 2020
+ Early deployment scenario assumes all new building space heating and water heating in the South Coast is electric starting in 2020

Residential Electrification: 2030

Commercial Electrification: 2030

3. All scenarios rely on renewables to decarbonize electricity

Note: In-state and out-of-state renewable development is assumed, including new transmission to deliver renewable resources.
Energy+Environmental Economics

Integration solutions needed:

+ Regional coordination
+ Renewable diversity
+ Flexible loads, especially flexible fuel production
+ 4-8 hr. stationary storage
+ Dispatchable hydro \& thermal generation

4. Sustainable biofuels used to replace either liquid or gaseous fuels

Share of Final Energy Demand by Fuel Type: 2030

Low Carbon Gas Scenario

Biofuels used in gaseous form in buildings \& industry

Straight Line Scenario

Biofuels used for liquid transportation fuels

- Natural Gas	- Biogas	- Gasoline
- Renewable Gasoline	- Diesel	- Renewable Diesel
- Electricity	- Hydrogen	- Other Fuels

KEY CONCLUSI ONS FOR DWP 100\% CLEAN ENERGY STUDY

Fuel switching drives rapid growth in electric loads after 2030

+ Electricity demand grows by 50-100\% after 2030
+ Electricity sector must contribute to decarbonization of other sectors

Renewable generation continues to increase through 2050

+ Renewables and hydro constitute 88\% of electricity generation by 2050 in this scenario
+ None of the scenarios analyzed achieves 100\% renewables

Total Electricity Generation including Rooftop PV

GHG Emissions reduced in all sectors of the economy

+ Electric power accounts for 16 MMT in 2050, or 18\% of statewide emissions
+ None of the scenarios analyzed achieves 0 GHG in electric sector

Key questions for the electric sector

+ Level and shape of new electric loads for decarbonization of other sectors
- Electric vehicles
- Electrification of space heating and cooling loads in buildings
- Electrification of industry
+ Availability of additional decarbonization tools
- Availability and cost of renewable natural gas
- Is there significant new demand for electricity to make hydrogen fuel?
- Is there significant new demand to make low-carbon natural gas using power-to-gas technology?

Thank You!

Energy and Environmental Economics, Inc. (E3)
101 Montgomery Street, Suite 1600
San Francisco, CA 94104
Tel 415-391-5100
Web http://www.ethree.com
Arne Olson, Partner (arne@ethree.com)
Nick Schlag, Sr. Managing Consultant (nick@ethree.com)

[^0]: Source: Deep Decarbonization Pathways Project Synthesis Report
 12

