



## Los Angeles 100% Renewable Energy Study

Advisory Group Meeting #3 Thursday, November 16, 2017, 8:45 a.m. to 2:00 p.m.

## **Meeting Summary**

## Location

City of Los Angeles Department of Water and Power (LADWP) John Ferraro Building 111 Hope St., Room 1514 Los Angeles, CA 90012

## **Attendees**

## **Advisory Group Members**

Ackley Padilla, Council District 6

Alexandra Nagy, Food and Water Watch

Allison Smith, Southern California Gas Company (SoCalGas)

Andrea Leon-Grossman, Food and Water Watch

Andy Schrader, Council District 5

Angela Johnson Meszaros, Earth Justice

Bahram Fazeli, Communities for a Better Environment

Bonny Bentzin, University of California, Los Angeles

Camden Collins, Office of Public Accountability (Rate Payer Advocate)

Carlos Baldenegro, Port of Los Angeles

Christos Chrysiliou, Los Angeles Unified School District

Cris Liban, Los Angeles County Metropolitan Transportation Authority

Danielle Osborn Mills, American Wind Energy Association

Erica Blyther, Los Angeles World Airports

Ernesto Hidalgo, Neighborhood Council Sustainability Alliance

Evan Gillespie, Sierra Club

Fred Pickel, Rate Payer Advocate

Graciela Geyer, Sierra Club

Hilary Firestone, Natural Resource Defense Council

Irene Burga, Environmental Defense Fund

Jack Durland, Valero Wilmington Refinery

Jack Humphreville, Greater Wilshire Neighborhood Council

Jasmin Vargas, RePower LA

Jean Claude Bertet, Los Angeles City Attorney, LADWP

Jessica Duboff, Los Angeles Chamber of Commerce

Jim Caldwell, Center for Energy Efficiency and Renewable Technology

Kendal Asuncion, Los Angeles Chamber of Commerce





Loraine Lundquist, California State University, Northridge
Matt Gregori, SoCal Gas
Matt Hale, Council District 2
Michelle Kinman, Environment California Research & Policy Center
Molly Deringer Croll, California Energy Storage Alliance
Priscila Kasha, Los Angeles City Attorney, LADWP
Rebecca Andreassen, Office of the Mayor
Shane Phillips, Central City Association
Shaouki Aboulhosn, Port of Los Angeles
Stewart Waldman, Valley Industry and Commerce Association
Ted Bardacke, Office of the Mayor
Ted Beatty, Southern California Public Power Authority
Tony Wilkinson, Neighborhood Council
Tyler Aguirre, Neighborhood Council Sustainability Alliance

## **LADWP Commissioners**

Aura Vasquez

## **LADWP Staff**

Anton Sy
Ashkan Nassiri
Atique Rahman
Brad Packer
Carol Tucker
Dan Scorza
Danny Blustein
Dawn Cotterell
Eric Montag
Joe Ramallo
Joseph Avila
Mukhlesur Bhuiyan
Stephanie Spicer

## **Consultants**

Aaron Bloom, National Renewable Energy Laboratory (NREL)
Devonie McCamey, NREL
Ramin Faramarzi, NREL
Scott Haase, NREL
Ana Nolan, Kearns & West
Jenna Tourje, Kearns & West
Joan Isaacson, Kearns & West
Taylor York, Kearns & West

## Welcome and Introductions

Joan Isaacson, Lead Facilitator from Kearns & West, welcomed Advisory Group members, gave an overview of the agenda (see Appendix A), and explained that this meeting would be focused more on discussion, rather than on presentations by LADWP and NREL staff. She noted that all





input will be recorded in writing, and that a summary will be prepared and distributed after the meeting. She also noted that there would be two different breakout discussions during the meeting, giving Advisory Group members the opportunity to provide more focused input. Another meeting goal noted by Joan was expanding the knowledge base of the Advisory Group.

In his welcoming remarks, Eric Montag, Senior Manager of Planning & Strategic Initiatives for LADWP, explained that during NREL's Partner Week in September 2017, he and LADWP Commissioner Aura Vasquez participated in a panel about accelerating transitions to 100 percent renewable energy. Eric also noted that David Wright, LADWP General Manager, gave a short presentation about the 100% Renewable Energy Study (Study) at the October LADWP Board meeting, and encouraged Advisory Group members to watch the clip. The video clip can be found on the LADWP 100% Renewable Energy website, at <a href="http://bit.ly/2B1woNc">http://bit.ly/2B1woNc</a>.

Scott Haase, Partnership Development Manager, NREL, also welcomed the Advisory Group and noted that NREL has recognized three "megatrends" that are helping to facilitate the possibility of a transition to 100 percent renewable energy:

- Leadership in renewable energy is becoming stronger at the state and local levels. This
  is evident across California as well as the rest of the country, notably with California
  Senate Bill 100 and other efforts in large cities such as Chicago, Orlando, and Los
  Angeles.
- 2. Costs for technologies are trending down. Over the last 10 years, costs have fallen for land-based wind projects by 40 percent, for distributed photovoltaic (PV) by 50 percent, for utility-scale PV by 65 percent, and for LED lightbulbs by 94 percent. Scott also noted that battery technology is on a similar trend.
- 3. Real-time data is becoming more accessible, and is being refined to an almost individual building scale.

Anton Sy, LADWP 100% Renewable Energy Study Project Manager, also welcomed the Advisory Group, and emphasized the importance of stakeholder input in the Study process.

Note that slides from all presentations are available on the LADWP 100% Renewable Energy Study website, at <a href="http://bit.ly/2B1woNc">http://bit.ly/2B1woNc</a>.

## **Updates**

Joan Isaacson introduced a new standing agenda item, during which the team and Advisory Group members can exchange updates of interest. Members are encouraged to submit updates for this item to Anton Sy (Anton.Sy@ladwp.com) for inclusion on future agendas. Updates from the LADWP and NREL team are noted below, and no updates were given by Advisory Group members at this meeting.

## August 2017 City Council Motion (File No. 16-0243)

On August 1, 2017, the City Council passed a motion directing LADWP to include the following in the LADWP 100% Renewable Energy Study (see Appendix C):

- 1. Analysis by Rate Payer Advocate on how each scenario fits within the current rate structure, including impact on low-income customers.
- 2. Incorporation of CalEnviroScreen into the process.





3. Prioritization of Environmental Justice Neighborhoods as early recipients of air quality improvements and greenhouse gas emissions reductions.

Utility Variable Generation Integration Group and NREL Challenges White Paper
Aaron Bloom, NREL, noted that NREL is working with the Utility Variable Generation Integration
Group (UVIG), which brings together engineers to talk about challenges of integrating 100%
renewables into the power system, on the development of a white paper that presents these
challenges. Aaron encouraged Advisory Group members to reach out to him for more
information on attending the next UVIG meeting in Tucson, Arizona. A draft of the Fact Sheet
developed at the UVIG Fall Technical Workshop is available upon request. NREL anticipates
publishing the fact sheet in January. To learn more, visit <a href="https://www.variablegen.org">www.variablegen.org</a>.

## **Advisory Group Process**

## **Advisory Group Check-in Calls**

Over the last few months, Joan Isaacson conducted check-in telephone calls with Advisory Group members. These conversations lasted between 20 and 30 minutes, and about 60-65 percent of Advisory Group members participated. A description of the calls and major themes are provided in Appendix D.

## **Meeting Materials and Advisory Group Roster**

Joan explained that moving forward, the project team is committed to distributing meeting materials to Advisory Group members at least one week in advance of each meeting. The project team has also compiled an updated roster, which can be found in Appendix E. She also reported on the team's plan to create a detailed process map in early December. It will identify the timing of Advisory Group meetings in relationship to steps in the Study, including the focus and discussion questions for each meeting. The process map will be shared at the first meeting in 2018.

## **Questions and Comments from Advisory Group Members**

The following comments were received from Advisory Group members in response to presentations given during the "Advisory Group Process" portion of the meeting.

<u>Comment:</u> There was concern that the Advisory Group is composed of a disproportionate ratio of environmental/community groups and businesses. It was suggested that the project team consider adding more business interests such as manufacturing, apartment owners, building owners, studios, hospitals, etc. Stuart Waldman, Valley Industry and Commerce Association, offered to provide a more detailed list. It was also noted that renewable energy industry stakeholders should be included.

It was also suggested that, rather than add more members to the Advisory Group, the project team should consider hosting public meetings. This would give an opportunity for a broader group of stakeholders to comment, while helping to maintain balance and manageability of the Advisory Group.





## **Setting the Stage for Renewables**

Aaron Bloom noted that there are many different considerations when thinking about how to achieve 100 percent renewable energy, and about what LADWP and NREL should include in the Study. Establishing the inputs and definitions for the Study is an important first step. For the Study, it is LADWP and NREL's role to define the questions, present them to the Advisory Group for discussion, and facilitate meaningful feedback.

City Council motions provide basic direction for the Study, and these have been included in the project scope to assess how the transition to renewable energy can affect the broader economy and environment in Los Angeles.

There have been many different approaches taken by policy makers, whether at the state, local, or federal level, to promote different policies, technologies, language, etc. NREL has prepared a memo to help explore terms commonly used to describe clean energy policies and programs (see Appendix F). Aaron noted that among states or organizations that define renewable energy, there is a high level of agreement on solar, wind, hydropower, geothermal, and bioenergy as renewable sources, and that California considers the widest variety of sources and methods of generation.

One of the key definitions of renewable energy adopted in the NREL memo is from the U.S. Energy Information Administration. It defines renewable energy as energy resources that are naturally replenishing but flow limited. This means that these resources are virtually inexhaustible in duration, but are limited in the amount of energy that can be harvested at one point in time.

There are also emerging definitions and terms that focus on carbon policy versus renewable policy. Instead of focusing on a specific technology, these terms focus on carbon emissions, and are generally grouped into a few different types:

- Low-carbon policies Address a desired decrease in carbon emission, possibly measured against a certain baseline level.
- Carbon-neutral policies Address resources that may emit carbon, but over their life cycle are considered to be carbon neutral.
- Zero carbon and carbon-free policies Address any generating technology that does not result in addition of carbon to the atmosphere. This could include nuclear and large hydropower, despite the fact that these may not be considered renewable.

There are a variety of renewable energy project scales, some deployed at a larger, gigawatt scale, and others deployed at a much smaller scale. Smaller-scale technologies may become a part of the renewable energy future, but may not make a significant contribution in the near term, due to their size or stage of development. These might include hydrogen fuel, small hydropower technologies, hydrokinetic, and tidal.

## **Technologies for Discussion and Small Group Discussion #1**

In considering renewable energy sources and technologies, Aaron explained that several need further discussion in relationship to the LA 100% Renewable Energy Study, as there may be





mixed options about whether they are defined as renewable, and/or subsequently used to reach LA's goals. Aaron then reviewed the following:

- Large hydropower This technology presents a challenge when talking about renewable energy standards, as it has environmental and ecological impacts.
- Bioenergy There is some general consensus that this technology could be considered carbon neutral, but does produce particulate emissions.
- Nuclear Divesting from nuclear energy may create more costs and increase the time it takes to reach renewable energy goals, since it is already an established source.
- Renewable Energy Credits These may provide a flexible option for attaining the last 10 to 20 percent of renewable goals.
- Low-carbon emissions As mentioned previously, these methods shift focus from technologies to emissions that are undesirable – the goal then becomes reduction of emissions rather than production or conservation of power.

During the meeting, Advisory Group members were given the opportunity to break up into four facilitated breakout groups and discuss these technologies more in-depth, identifying and discussing advantages and disadvantages of each. Each group facilitator then asked for a volunteer to report back to the larger Advisory Group, focusing on discussion around the zero carbon emissions objective.

All notes from the small group discussions are consolidated in Appendix B.

## **Questions and Comments from Advisory Group Members**

The following comments were received from Advisory Group members in response to presentations given during the "Setting the Stage for Renewables" portion of the meeting.

<u>Comment:</u> In the case of large hydropower, it could become a policy choice – do not allow new development, but keep and utilize existing development.

<u>Comment:</u> We have seen challenges with maintaining large infrastructure, such as the Oroville Dam, and we should consider what happens if large investments are needed for maintaining infrastructure like the Palo Verde Nuclear Generating Station – have a backup plan in case these large generation sources fail.

<u>Comment:</u> The Study should consider that some of the biggest energy production transformations have occurred at the time that old equipment needed to be replaced anyway. In these cases, we will not be replacing perfectly good generating sources – but we need to consider what we are replacing them with.

<u>Question:</u> Is there a consideration of resource interconnection – what are the other sources, and where are they located?

<u>Answer:</u> There is a real potential that the 100 percent goal may not be met through generation that is exclusively within California boundaries, and LADWP will need to rely on interconnections elsewhere.





<u>Comment:</u> The Study should consider how renewable energy affects the broader energy economy, including water.

## **Public Information and Outreach**

Joe Ramallo, LADWP Assistant General Manager of Communications, Marketing and Community Affairs, gave a presentation on how public information and outreach for the LA 100% Renewable Energy Study fits into the broader power and clean energy communication programs.

LADWP reaches out through public forums, such as neighborhood councils and business organizations, to share progress and accomplishments in clean energy, and to remind the community that progress is being made. LADWP has a commitment and obligation to provide reliable service and competitive rates to ratepayers, and considers these factors in all studies and plans. It is also important to outline current initiatives, such as the 100% Renewable Energy Study effort and the Once-Through Cooling Study.

With respect to media coverage, few reporters cover these topics, making coverage a challenge. Joe encouraged Advisory Group members to reach out to him or to Anton Sy before responding to media inquiries, to ensure accurate information is relayed.

LADWP plans to conduct presentations to local councils and community groups on the 100% Renewable Energy Study, as part of the Clean Energy program, in the near future. Advisory Group members whose organizations are interested in a presentation should contact Joe. The recent clean energy brochure is a good resource for Advisory Group members to share. Joe also noted that any Advisory Group members who blog about the Study are encouraged to reach out to LADWP so that the department is aware of information is shared.

## **Questions and Comments from Advisory Group Members**

The following comments were received from Advisory Group members in response to presentations given during the "Public Information and Outreach" portion of the meeting.

Question: Many Advisory Group members asked if it was possible to involve a broader set of stakeholders in this effort, including the environmental justice and business communities.

Answer: LADWP can help with outreach to and talk with community groups, but it can be challenging to organize a community meeting aimed at the general public around a specific topic – it is often difficult to get community members to attend.

Eric Montag noted that there are challenges and potential conflicts of interest when inviting certain interests or vendors and not others to participate on the board. This is why there is a focus on including alliances, councils, and other representative groups, rather than specific businesses or industry representatives. Joan Isaacson also noted that Advisory Group members are encouraged to act as representatives and take discussion topics back to those they represent, such as individual businesses or stakeholders.

## **Once-Through Cooling Study (OTC)**

Ashkan Nassiri, Manager of Strategic Initiatives B, gave a presentation on LADWP's OTC Study and its relationship to the 100% Renewable Energy Study. OTC is the process of drawing large





quantities of ocean water into generating facilities for cooling purposes, and then returning the water back to the ocean. This has been found to have potentially adverse effects on wildlife, and LA has begun the process of eliminating this method of cooling at three of its coastal power plants. LADWP has identified six generating facilities for repowering projects over the last 15 years, with the aim of updating and increasing efficiency of these facilities. Two of these projects have been completed in the last five years.

In 2017, LADWP paused repowering efforts to analyze whether these generating stations should be repowered or whether they should be retired and replaced with different sources of energy production such as renewable energy. The OTC Study employs scenarios that will be used to determine reliability issues with replacing these facilities, and examine various combinations of repowering and retirement. The data collection phase of the project began in August 2017, and is expected to be completed in late 2017.

Cost of repowering is a component of the OTC Study, as well as mitigation measures that will be utilized when generators stop and start producing. Once scenarios are completed and vetted, LADWP will UPDATE the city's Power Integrated Resource Plan accordingly.

NREL will also incorporate data from the OTC Study in the 100% Renewable Energy Study.

## **Questions and Comments from Advisory Group Members**

The following comments were received from Advisory Group members in response to presentations given during the "Once-Through Cooling" portion of the meeting.

Question: What occurred to initially trigger this study?

<u>Discussion</u>: There was some discussion that events occurring at the Aliso Canyon storage facility played a role in triggering the study, as well as a desire to reduce dependence on natural gas.

<u>Comment</u>: Interconnected systems, such as California Independent System Operator (CAISO) should be considered. It was noted that it is important to work with other operators to avoid duplication of effort and/or inconsistent approaches.

## **Small Group Discussion #2**

As part of an effort to ensure that the 100% Renewable Energy Study is as thorough as possible, Advisory Group members were randomly separated into four small groups and asked to brainstorm ideas, questions, variables, and issues for NREL to consider as part of the Study. The goal was to generate as many responses in a set amount of time as possible, and results were recorded by each group facilitator on a flip chart.

Facilitators then asked Advisory Group members to identify relative priorities by placing one sticky dot on each of seven topics that they believed were most important, and a volunteer was chosen to report back to the larger Advisory Committee.

Results of this brainstorming activity and prioritization results can be found in Appendix B.





## **Conclusions and Next Steps**

As always, Advisory Group members are encouraged to send comments or questions on any topics to Anton Sy, Project Manager: <a href="mailto:anton.sy@ladwp.com">anton.sy@ladwp.com</a>, or (213) 367-2332.

The next quarterly meeting is planned for February 2018.





## Appendix A Agenda





## City of Los Angeles 100% Renewable Energy Study Thursday, November 16, 2017 8:45 a.m. – 2:00 p.m.

Los Angeles Department of Water and Power, Room 1514

| 8:45 – 9:00 a.m.   | Arrive at LADWP / Networking / Continental Breakfast                                                                                                                                                                                     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:00 – 9:05 a.m.   | Call to Order and Agenda Overview  Joan Isaacson, Facilitator                                                                                                                                                                            |
| 9:05 – 9:15 a.m.   | Welcome and Introductions Eric Montag, Anton Sy, Scott Haase, Advisory Group                                                                                                                                                             |
| 9:15 – 9:25 a.m.   | <ul> <li>Updates Joan Isaacson, Facilitator</li> <li>August 2017 City Council Motion (File No. 16-0243)</li> <li>David Wright Board Presentation (Link)</li> <li>Utility Variable Generation Integration Group</li> <li>Other</li> </ul> |
| 9:25 – 9:40 a.m.   | <ul> <li>Advisory Group Process</li> <li>Summary of Telephone Call Input</li> <li>Detailed Process and Meeting Timelines</li> </ul>                                                                                                      |
| 9:40 – 11:30 a.m.  | <ul> <li>Setting the Stage for Renewable Energy Analysis</li> <li>NREL Memo</li> <li>Scenario Development Process</li> <li>Break</li> <li>Discussion Activity: Definitions of Renewable Energy Joan Isaacson and Aaron Bloom</li> </ul>  |
| 11:30 – 11:45 a.m. | Lunch Served                                                                                                                                                                                                                             |
| 11:45 – 12:30 p.m. | <ul> <li>Lunch Presentations</li> <li>Once-Through-Cooling Study</li></ul>                                                                                                                                                               |
| 12:30 – 1:45 p.m.  | Discussion Activity: Considerations for the Study<br>Joan Isaacson and Aaron Bloom                                                                                                                                                       |
| 1:45 – 2:00 p.m.   | <ul> <li>Wrap-up and Next Steps</li> <li>Next meeting date: February 15, 2018 (Tentative)</li> <li>Topics for Next Meeting</li> <li>Joan Isaacson, Aaron Bloom and Anton Sy</li> </ul>                                                   |





## **Appendix B**

Discussion Activity Format and Results





## Los Angeles Department of Water and Power 100% Renewable Energy Study

Advisory Group Meeting #3 Thursday, November 16, 2017, 8:45 a.m. to 2:00 p.m.

**Appendix B:** Discussion Activity Format and Results

## **Discussion 1: Energy Resource Questions**

Below is a tabulation of results from Discussion 1. Advisory group members were randomly organized into four groups, each discussing the same topics. The goal of this exercise was to facilitate input from Advisory Group members on the advantages and disadvantages of incorporating each of five energy resources into LA 100% renewable energy study: 1) Large Hydro, 2) Bioenergy, 3) Nuclear, 4) Renewable Energy Credits (RECs), and 5) a Zero Carbon Emissions objective.

Group 1

| Large Hydro                     |                                                                               |  |
|---------------------------------|-------------------------------------------------------------------------------|--|
| Positives                       | Negatives                                                                     |  |
| Already built (existing plants) | Controversial new development is expensive, has emissions                     |  |
| Cheap (existing plants)         | Potential decommissioning of existing plants has risks, timing considerations |  |
| Flexible                        | Snowpack-dependent (affected by droughts)                                     |  |
| Lots of storage                 | Currently not defined as renewable in RPS                                     |  |
| Enables reuse of toxic water    | Affects/impacts indigenous communities                                        |  |
| Efficient (existing plants)     | No local economic development benefit                                         |  |
| Zero-carbon                     |                                                                               |  |
| No particulate emissions        |                                                                               |  |
| No combustion                   |                                                                               |  |
| No impact on EJ communities     |                                                                               |  |
| Helps with the duck curve       |                                                                               |  |
| General Comments                |                                                                               |  |

### General Comments

| Bio-Energy                                                                           |                                                                     |  |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Positives                                                                            | Negatives                                                           |  |
| Carbon neutral                                                                       | Biomass combustion emits carbon                                     |  |
| Supports SLCP (short-lived climate pollutant) by CAR (California Air Resource Board) | Creates waste                                                       |  |
| Flexible resource                                                                    | Ancillary environmental impacts                                     |  |
| Can be used onsite                                                                   | Building new facilities could impact EJ and indigenous communities  |  |
|                                                                                      | Dis-incentivizes some sustainable farming/waste reduction practices |  |
|                                                                                      | Infrastructure concerns – what would be the cost?                   |  |
| General Comments                                                                     |                                                                     |  |
| None                                                                                 |                                                                     |  |





| Nuclear                                                                                                                                                                                                  |                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| Positives                                                                                                                                                                                                | Negatives                                                                                                                    |  |
| Existing: zero carbon; investment has already been made; currently a significant part of DWP portfolio (what would be the cost for not continuing to include it in the mix?); zero particulate emissions | Existing: nowhere to store waste product; high risks and environmental impacts; national security risk; close to fault lines |  |
| New: there is the potential for promising new technology that is smaller and safer (do we want to exclude this possibility?)                                                                             | New: legality questions in CA; long permitting/lead times; high cost; technology is not mature                               |  |
| General Comments                                                                                                                                                                                         |                                                                                                                              |  |
| None                                                                                                                                                                                                     |                                                                                                                              |  |

| Renewable Energy Credits (RECs)                                                 |                                                                            |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Positives                                                                       | Negatives                                                                  |  |
| Possibly the most cost-effective way to reduce global/regional carbon emissions | "Pay to pollute"                                                           |  |
| Creates new revenue stream for more renewables to come online generally         | Does not necessarily put EJ local communities first, in terms of pollution |  |
| Gives DWP more options for meeting a carbon-<br>neutral goal                    | Accounting of GHG/RPS requirements can be challenging                      |  |
| Possibility of even exceeding 100% renewables                                   | Not a good model for LA in terms of local leadership                       |  |
|                                                                                 | Studies show the model doesn't work as it's                                |  |
|                                                                                 | supposed to in terms of pollution/carbon                                   |  |

## **General Comments**

## None

| Zero Carbon Emissions Objective                         |                                       |  |
|---------------------------------------------------------|---------------------------------------|--|
| Positives                                               | Negatives                             |  |
| Encourages a portfolio of diverse zero-carbon resources | Does not address other air pollutants |  |
| Most direct way of addressing climate change, as        | Could incentivize other less          |  |
| the goal                                                | sustainable/renewable technologies    |  |
| Could be less costly                                    | Concerns about pace                   |  |
| Broad portfolio (doesn't just focus on renewables       | Need to address the storage issue     |  |
| alone)                                                  |                                       |  |
| Objective is clear and simple                           |                                       |  |
| Makes a statement about DWP's ultimate goal in          |                                       |  |
| establishing emissions as the clear priority            |                                       |  |
| General Comments                                        |                                       |  |

### General Comments





| Large Hydro                                                                                                         |                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Positives                                                                                                           | Negatives                                                                                                                   |
| Large amount, cheap power                                                                                           | Seasonality                                                                                                                 |
| Infrastructure exists                                                                                               | Connects to local goal of water use                                                                                         |
| Castaic: we are bringing the water in anyway                                                                        | Has an impact on wildlife – doesn't align with sustainability goals                                                         |
| Can help in making sure we have enough money to build more renewables, but should consider ultimately commissioning | Not measuring cost of ecosystem health                                                                                      |
| Shortcut                                                                                                            | Shortcut                                                                                                                    |
| 24/7 power supply                                                                                                   | Aging infrastructure – cost of maintaining – too much cost to maintain – or newer technology could provide better power     |
| Provides an opportunity to add new technology without building a new system                                         | <ul> <li>Challenges with drought cycles</li> <li>Less reliable</li> <li>Water may take priority over electricity</li> </ul> |
| Zero emissions – no carbon                                                                                          | Interference with indigenous communities – Pah-<br>Ute tribe                                                                |
| Existing jobs                                                                                                       |                                                                                                                             |
| General Comments                                                                                                    |                                                                                                                             |

## None

| Bio-Energy                                                                         |                                                                                                        |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Positives                                                                          | Negatives                                                                                              |  |
| Carbon neutral while producing energy                                              | All of the technology used for bio energy falls under the same state regulation despite wide variation |  |
| Reduces existing waste in landfills                                                | Combustion and associate pollution                                                                     |  |
| Utilization of certain forms can reduce combustion                                 | May not be at-scale or cost effective                                                                  |  |
| Uses existing systems – compliments existing systems such as wastewater processing | Investment in dis-incentivizing waste reduction                                                        |  |
| Utilizes waste streams that cannot go elsewhere                                    | Leakage – Methane – GHG intense                                                                        |  |
|                                                                                    | Complex system                                                                                         |  |

## **General Comments**

## What pollutants are we talking about?

| What politicante are we talking about.            |                                                    |
|---------------------------------------------------|----------------------------------------------------|
| Nuclear                                           |                                                    |
| Positives                                         | Negatives                                          |
| Band-Aid in the interim                           | Current approach in U.S. is outdated               |
| <ul> <li>Existing generation</li> </ul>           |                                                    |
| <ul> <li>Such a small amount currently</li> </ul> |                                                    |
| Carbon Free                                       | Regulatory regime is not practical for new nuclear |
| Large energy source – has longevity               | Nuclear waste                                      |
|                                                   | Liability of an accident                           |
|                                                   | Uninsurable                                        |
|                                                   | Regulatory system not sufficient to deal with      |
|                                                   | waste                                              |
|                                                   | National security concern                          |
| General Comments                                  |                                                    |





| Renewable Energy Credits (RECs)                                        |                                                                   |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Positives                                                              | Negatives                                                         |  |
| Funding mechanism for future projects                                  | Dis-incentivizes innovation                                       |  |
| Financing source if LADWP can reach its 100% goal and can sell credits | Doesn't remove local polluting energy sources                     |  |
| Practical way (in the future) to get from 80-100% -                    | "The solution to pollution is dilution"                           |  |
| Could cover baseload needs                                             | <ul> <li>If everyone uses them, they are not effective</li> </ul> |  |
|                                                                        | If we are investing in renewable energy                           |  |
|                                                                        | elsewhere, we don't experience the benefit of                     |  |
|                                                                        | jobs, economics, etc.                                             |  |
|                                                                        | Shortcut                                                          |  |
|                                                                        | Take credit for being at 100% without actually                    |  |
|                                                                        | achieving tangible goals – intellectual wiggle room               |  |
|                                                                        | Masks the fossil fuel generation in LA                            |  |
|                                                                        | Contributes to racist policy                                      |  |
|                                                                        | Can easily be taken away                                          |  |
| General Comments                                                       |                                                                   |  |
| None                                                                   |                                                                   |  |
| Zero Carbon Emissions Objective                                        |                                                                   |  |
| Positives                                                              | Negatives                                                         |  |
| Low-cost – existing generation                                         | Diminished efforts such as social justice                         |  |
| Carbon free                                                            | Does not adequately capture other effects                         |  |
| Addresses climate change                                               | Not a good health objective                                       |  |
| Good climate objective                                                 | Has not been effective in making massive                          |  |
|                                                                        | transformation                                                    |  |
| Industry leadership and jobs                                           | Takes focus off of using less energy                              |  |
|                                                                        | Does not make a reduction                                         |  |
| General Comments                                                       |                                                                   |  |
| May not be renewable                                                   |                                                                   |  |

| Large Hydro                                                                                                        |                                                       |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Positives                                                                                                          | Negatives                                             |  |
| Provides storage which is helpful with renewables                                                                  | Methane emissions                                     |  |
| Critical for Power quality                                                                                         | Decomposing matter anaerobic digester                 |  |
| 100% renewables isn't achievable without it                                                                        | Variable with drought                                 |  |
| Dispatchable                                                                                                       | Ecosystem, biologic and landscape concerns            |  |
| Extensive resources outside of LA that we could access (ex: British Columbia)                                      | Long time to expand hydro facilities                  |  |
| We have it already                                                                                                 | Extensive and expensive to access outside resources   |  |
| Efficient storage                                                                                                  | Not efficient                                         |  |
| River basins provide multi-year storage                                                                            | Migrating fish impacts                                |  |
| Low operating cost                                                                                                 | Expansion will be politically and legally challenging |  |
|                                                                                                                    | High capital cost                                     |  |
| General Comments                                                                                                   |                                                       |  |
| Some comments are related to adding new capacity and some are about existing resources and including them in study |                                                       |  |
| There are trade offs                                                                                               |                                                       |  |
| Can we modify existing facilities to work better with renewables?                                                  |                                                       |  |





| Bio-Energy                                                                                                     |                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Positives                                                                                                      | Negatives                                                                                                                                           |  |
| Takes advantage of existing waste stream that will always be with us                                           | Not zero emissions                                                                                                                                  |  |
| Many are commercially viable, well demonstrated and globally deployed                                          | Emissions                                                                                                                                           |  |
| Carbon zero or carbon negative                                                                                 | Not a reliable source of energy                                                                                                                     |  |
| Taking advantage of currently installed infrastructure and end uses would require less investment              | Increase in CO2 emissions                                                                                                                           |  |
| "Back to the Future" - will selectively harvest and<br>burn wood again. We have over one million dead<br>trees | Carbon accounting can be very challenging                                                                                                           |  |
| Reduces methane                                                                                                | Must consider trade-offs between the negatives and positives and it's hard to figure out (what is the exact processing method? The exact ecosystem) |  |
| We have very good carbon accounting models in California                                                       | Does not fit into our long-term plan for zero emissions                                                                                             |  |
| California is a great model - used to account for carbon                                                       | Puts in place infrastructure that displaces other options                                                                                           |  |
| Captures energy from waste (although this is complex)                                                          | Some waste streams are a small slice of the pie (apples and banana peels)                                                                           |  |
| Dispatchable                                                                                                   |                                                                                                                                                     |  |
| Base load                                                                                                      |                                                                                                                                                     |  |
| Peak following                                                                                                 |                                                                                                                                                     |  |
| Canaral Comments                                                                                               |                                                                                                                                                     |  |

## **General Comments**

Some might be really good transitional solutions that we don't want to keep for too long

Study should focus on different factors based on:

- Environmental justice concerns
- Availability of waste stream and how waste stream is changing over time
- Overall impact of greenhouse gas emission

| Nuclear                                              |                                                           |
|------------------------------------------------------|-----------------------------------------------------------|
| Positives                                            | Negatives                                                 |
| Zero emissions                                       | Expensive to build                                        |
| Base load                                            | Uncertain U.S. future                                     |
| Helps system inertia                                 | Need more research to make it cost efficient              |
| Marginal production costs. Costs are low.            | Significant health impacts upon exposure during           |
|                                                      | accidents                                                 |
| We have it                                           | Waste                                                     |
| We can access additional resources from out of state | We don't have a viable solution for nuclear waste         |
| Sidio                                                | Significant environmental impacts that last for centuries |
|                                                      | Legally and politically problematic                       |
| General Comments                                     |                                                           |
| None                                                 |                                                           |





| PositivesNegativesCost effective solutionProper accounting of credits can be a problemPromotes renewable energy productionProne to fraudCan be a more effective way of reducing greenhouse gas emissions (Especially the last 10%-20%)Communities in LA are not getting the same public health benefits |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Promotes renewable energy production  Can be a more effective way of reducing greenhouse gas emissions (Especially the last public health benefits  Prone to fraud  Communities in LA are not getting the same public health benefits                                                                   |
| Can be a more effective way of reducing greenhouse gas emissions (Especially the last public health benefits                                                                                                                                                                                            |
| greenhouse gas emissions (Especially the last public health benefits                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
| Can be helpful in a transition to higher goals  Subject to market forces (manipulation)                                                                                                                                                                                                                 |
| RECs is a global solution to a global problem  Exporting (negative) impacts of renewable energy generation to other places                                                                                                                                                                              |
| A lot of renewable investments come in big, single                                                                                                                                                                                                                                                      |
| projects and RECs allow for a smooth transition while retaining goals                                                                                                                                                                                                                                   |
| As renewables come down in price, there can be a bridge with RECs                                                                                                                                                                                                                                       |
| Can still achieve goals by providing RECs You are exporting all of the benefits too (like job generation)                                                                                                                                                                                               |
| Broadens price competition between renewable Missing opportunities to provide economic and                                                                                                                                                                                                              |
| technologies technical leadership by showing how truly 100%                                                                                                                                                                                                                                             |
| renewable we can be                                                                                                                                                                                                                                                                                     |
| Can be technology neutral - not picking winners or Does not coincide with Mayor's "Lead By                                                                                                                                                                                                              |
| losers Example"                                                                                                                                                                                                                                                                                         |
| Way to finance renewable energy transitions in Politically it's opposed by Environmental Justice                                                                                                                                                                                                        |
| places that cannot afford it communities                                                                                                                                                                                                                                                                |

## **General Comments**

How far away can we count them? Can we go internationally?

| Zero Carbon Emissions Objective                    |                                                                   |
|----------------------------------------------------|-------------------------------------------------------------------|
| Positives                                          | Negatives                                                         |
| Reducing carbon emissions focuses on the main      | A potential to blunt local objectives (like job                   |
| objective globally                                 | creation)                                                         |
| We need to make tradeoffs with other emissions     | Potential to fail to address other negative environmental impacts |
| Easier to define "zero carbon" than it is          | We deprive ourselves of multiple benefits of                      |
| "renewables"                                       | reaching zero carbon and societal benefits                        |
| Accounting for carbon is more difficult accounting |                                                                   |
| and accounting for renewables is more difficult    |                                                                   |
| philosophically                                    |                                                                   |
| Run the risk of getting a scenario that grows      |                                                                   |
| carbon emissions in the short term                 |                                                                   |
| Costs less (*but must consider society costs)      |                                                                   |
| Adds to diversity of available resources           |                                                                   |
| Climate problem is more pressing on whether our    |                                                                   |
| energy resources are going to run out              |                                                                   |
| General Comments                                   |                                                                   |

Questions of life cycle analysis Should we stay faithful to Council Motion?

Definition of "renewable" is political. The definition of emissions is scientific





| Large Hydro             |                                                 |
|-------------------------|-------------------------------------------------|
| Positives               | Negatives                                       |
| Cheap                   | Doesn't count as a Renewable Portfolio Standard |
| Reliable                | Differentiated output over time                 |
| Flexible                | Rainfall matters                                |
| Zero emissions          | Environmental regulations affecting cost        |
| Renewable               | Quality of infrastructure varies                |
| Local control (Castaic) | Build-out                                       |
|                         | Upstream emissions                              |
|                         | Maintenance                                     |
|                         |                                                 |

## **General Comments**

Consider distinction between pumped hydro storage and generation

| Bio-Energy                                |                                             |
|-------------------------------------------|---------------------------------------------|
| Positives                                 | Negatives                                   |
| Lower greenhouse gas option               | Limited availability                        |
| Alternative to releasing methane into the | Limited potential                           |
| atmosphere                                |                                             |
| "Renewable"                               | Fairly expensive                            |
| Forest management                         | Emissions – NOx, particulates               |
| Wildfire prevention                       |                                             |
| Dispatchable                              | State limits availability of some types     |
| Increasing availability                   | Controversial                               |
|                                           | Changing regulations                        |
|                                           | Refinement needed to get fuel into gas line |

## **General Comments**

## None

| Nuclear                                     |                                           |
|---------------------------------------------|-------------------------------------------|
| Positives                                   | Negatives                                 |
| Good baseload                               | Not renewable                             |
| Reliable                                    | Expensive (newly-built)                   |
| Existing                                    | Nuclear waste                             |
| Low cost                                    | High environmental and public health risk |
| Paying jobs – 2000 at San Onofre Generating | Security risk                             |
| Station                                     |                                           |
| Real cost is high                           | Political challenges                      |
| Palo Verde is mostly paid for               | Not flexible                              |
| Small footprint per output                  | Liability risk                            |
| Zero carbon                                 |                                           |
| General Comments                            |                                           |

### **General Comments**





| Renewable Energy Credits (RECs)                               |                                                              |  |
|---------------------------------------------------------------|--------------------------------------------------------------|--|
| Positives                                                     | Negatives                                                    |  |
| Cheap                                                         | Doesn't shift the makeup of grid – accounting                |  |
|                                                               | system                                                       |  |
| Balance the margins on the shortfalls                         | Unclear whether purchasing RECs creates new renewable energy |  |
| Helps build projects somewhere else                           | Should be less available infrastructure                      |  |
| Jobs                                                          | Gives less credibility to program                            |  |
| Opens potential to renewable energy                           | Difficult to understand                                      |  |
|                                                               | State standard should be considered floor                    |  |
| General                                                       | Comments                                                     |  |
| None                                                          |                                                              |  |
| Zero Carbon Emissions Objective                               |                                                              |  |
| Positives                                                     | Negatives                                                    |  |
| Avoid climate change                                          | Harder to calculate                                          |  |
| Cleaner atmosphere                                            | More expensive – requires conversion from one                |  |
|                                                               | technology / usage to another                                |  |
| ess expensive to pursue – dams, nuclear Politically difficult |                                                              |  |
| Requires less maintenance                                     |                                                              |  |
| Stepping stone to 100% renewable future                       |                                                              |  |
| Good!                                                         |                                                              |  |
| General Comments                                              |                                                              |  |





## **Discussion 2: Considerations for the Study**

Below is a tabulation of results from Discussion 2. Advisory group members were again randomly organized into four groups, each discussing the same topics. The goal of this exercise was to brainstorm on the following question: "What types of questions, issues, topics, and ideas should be considered as part of the study?" Facilitators asked Advisory Groups members to identify as many ideas as possible in a set amount of time, and input was recorded on a flipchart. Facilitators then asked Advisory Group members to identify relative priorities by placing one sticky dot on each of seven topics that they believed were most important. A preselected member of each breakout group then reported back to the larger Advisory Group on the top seven priorities identified. Because multiple ideas may have had a similar number of dots, the highlighted rows indicate ideas discussed during reporting out.

| Comment                                                                                                                                                                                                                                                           | # Dots |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Consider electrifying appliances, not just transportation; what would be the impact of this to ratepayers in terms of costs and job creation/pipeline?                                                                                                            | 7      |
| Need a clear timeline and targets for the study, both for the broader end goal and interim goals                                                                                                                                                                  | 6      |
| Question: is rate design part of the study?                                                                                                                                                                                                                       | 5      |
| Measure reliability in terms of climate resiliency of the grid; the context for the study is a post-climate-change world, so extreme weather and disaster mitigation should be considered                                                                         | 4      |
| Emphasis on energy efficiency (to reduce overall use)                                                                                                                                                                                                             | 4      |
| Focus on energy that won't harm or kill us (consider health impacts)                                                                                                                                                                                              | 3      |
| Marry DWP goal with the LA mayor's plan for sustainability in terms of battery storage                                                                                                                                                                            | 3      |
| Look at impacts of proposed changes at the ratepayer level (in terms of costs) compared to traditional/current practices                                                                                                                                          | 3      |
| Study should be technology-neutral and focus on the broader goal                                                                                                                                                                                                  | 3      |
| Study should be primarily concerned with environmental/climate impacts                                                                                                                                                                                            | 3      |
| Consider slow/medium/fast scenarios and tradeoffs for each                                                                                                                                                                                                        | 3      |
| Consider lifecycle analysis for different technologies, including manufacturing and disposal                                                                                                                                                                      | 3      |
| Question: what if we decentralize and provide power more locally (i.e., microgrids)?                                                                                                                                                                              | 2      |
| Consider localized impacts in terms of urban pollution, EJ communities                                                                                                                                                                                            | 1      |
| Study should consider the idea of a "just transition;" a positive outcome should incorporate local workers into the new energy economy with new jobs, and consider the roles of CEOs on down in moving to this new economy and away from traditional fossil fuels | 1      |
| Consider the local impacts of new transmission/distribution lines (both overhead and underground)                                                                                                                                                                 | 1      |
| Question: how do local investments in RECs help us get to 100% (analyze the impacts of DWP's current REC policy)?                                                                                                                                                 | 1      |
| Consider consumer education (energy efficiency) as part of the solution                                                                                                                                                                                           | 1      |
| Question: how can we safely decommission dirty energy?                                                                                                                                                                                                            |        |
| Consider how DWP can use this study and future actions to diversify jobs (in terms of DWP's equity metrics initiative and goals)                                                                                                                                  |        |
| Consider water footprint                                                                                                                                                                                                                                          |        |
| Analyze local economic impacts (vs. exporting energy)                                                                                                                                                                                                             |        |
| Consider equity when considering how and when we get to 100% – include diverse voices when collecting input                                                                                                                                                       |        |
| Consider other programs DWP has (e.g., community solar, microgrids, feed-in tariffs) and how these will be impacted by or could contribute to the study                                                                                                           |        |





| Group 2                                                                                                               | I and the second |
|-----------------------------------------------------------------------------------------------------------------------|------------------|
| Comment                                                                                                               | # Dots           |
| Lifecycle analysis – GHG emissions                                                                                    |                  |
| Fair footing on health                                                                                                | 11               |
| <ul> <li>Externalities – health, environmental, etc.</li> </ul>                                                       | ' '              |
| <ul> <li>Cost of climate changes that come about as a result of inaction</li> </ul>                                   |                  |
| Lessons learned from other countries and/or projects                                                                  | 6                |
| Equity, environmental justice, social equity, local hire, workforce development                                       |                  |
| <ul> <li>Environmental racism – generation and emissions in communities of color –</li> </ul>                         |                  |
| addressing this                                                                                                       |                  |
| Impacts from existing generation                                                                                      | 5                |
| <ul> <li>How does new development address this?</li> </ul>                                                            |                  |
| <ul> <li>CalEnviroscreen – Environmental justice benefits from air quality improvements</li> </ul>                    |                  |
| first – where can air pollution benefit first?                                                                        |                  |
| Where does mobile-source electrification go first?                                                                    |                  |
| Leverage assets                                                                                                       |                  |
| Transportation elements                                                                                               |                  |
| Revitalization – "Brownfields to Brightfields"                                                                        |                  |
| Tidal turbines on Castaic                                                                                             | 5                |
| Urban spaces / rooftops                                                                                               |                  |
| Potential environmnetal benefits (other auxiliary benefits)                                                           |                  |
| Urban cooling / greening                                                                                              |                  |
| Timing of when to achieve 100%                                                                                        | _                |
| 2023 Olympics                                                                                                         | 5                |
| Timing of other system replacements                                                                                   |                  |
| Smart cities technology /smart grid – microgrid                                                                       | 4                |
| Cost/benefits – comprehensive and up-front – consider potential sources for financing                                 | 4                |
| the transition                                                                                                        |                  |
| Leaving door open for tech innovations and emerging technology, consider how these are integrated – foster innovation | 3                |
| Biodiversity issues                                                                                                   | 3                |
| Aggressive efficiency / reduction                                                                                     | 3                |
| Transmission and distribution flows and needs                                                                         | 1                |
| Holding rates to inflation – what is the impact on rates? Should resulting policy be put to                           | '                |
| a vote?                                                                                                               | 1                |
| Lifecycle of electric vehicles                                                                                        |                  |
| True cost before rebates                                                                                              | 1                |
| How are we subsidizing the cost of rooftop solar, etc.                                                                |                  |
| Reliability                                                                                                           | 1                |
| How does LA planning relate to CA planning?                                                                           | 1                |
| Environmental improvement                                                                                             |                  |
| Mission Creep – Are ratepayers responsible for certain aspects?                                                       |                  |
| Efficiency of different generation scales – utility vs. distributed                                                   |                  |
| Assign responsibility to sectors                                                                                      |                  |
| Land use                                                                                                              |                  |





| Comment                                                                                    | # Dots |
|--------------------------------------------------------------------------------------------|--------|
| How do we think about costs that are not easily quantifiable?                              |        |
| Talk about impacts to public health                                                        |        |
| How do we incorporate costs that are externalized?                                         | _      |
| Job creation, local economy, public health, political changes, co-benefits                 | 5      |
| Impacts of mining                                                                          |        |
| Example: waste of solar panels that only have a 15 year life                               |        |
| Reliability                                                                                | 4      |
| Resilience and building a future-looking system                                            | 3      |
| There are other air pollutants. Consider public health benefits at a low cost.             | 3      |
| Industrial, social, economic justice & environmental justice policy to help inform choices | 3      |
| Address rate payer value                                                                   | 3      |
| What if we had 120% green power?                                                           |        |
| We can help others with their objectives                                                   | 2      |
| 80% base + 20% for others + an additional 20%                                              |        |
| Process should focus on fast short-term greenhouse gas emissions reductions and then       |        |
| get to 100% renewable                                                                      | 2      |
| Leave an opportunity for technological advances that may shift thinking                    | 2      |
| Shouldn't let price drive the choice                                                       | 2      |
| Create markets to solve problems as cost effectively as possible                           | 2      |
| Transmission availability and options                                                      | 2      |
| Typical local impacts of policy choices                                                    | 2      |
| Educate people on the bigger picture (People are willing to make trade-offs when they      | 2      |
| understand the broader context                                                             | 2      |
| DWP plan within other plans (such as integration with the CCA and CAISO)                   |        |
| Consider costs                                                                             | 1      |
| <ul> <li>Disadvantaged communities' costs vs. other communities</li> </ul>                 | 1      |
| What are the likelihoods of getting to 100%?                                               | 1      |
| Consider the long term - 75%-100%                                                          | 1      |
| Give context for how one might approach getting to 100%                                    | 1      |
| Factor in behavioral changes                                                               | 1      |
| Think regionally and globally                                                              |        |
| This is a global issue - don't think just locally                                          |        |
| How do we get some technologies where they need to be?                                     |        |
| Not prematurely settling on one technology                                                 |        |
| Study represents a longer-term goal                                                        |        |
| Required load storage and shifting                                                         |        |
| Cost considerations                                                                        |        |
| Consider cost and societal changes and how fast technologies are changing                  |        |
| Study should inform what we are doing <u>now</u>                                           |        |
| Intersection of study and OTC is important                                                 |        |
| New technologies have higher hurdles than current sources                                  |        |
| For what it is we are doing                                                                |        |
| Status quo isn't sustainable                                                               |        |
| What can new technologies do that merit displacing what we are doing now?                  |        |
| There is a difference between "price" (dollars) vs. cost                                   |        |
| Framework for environmental justice and other benefits vs. energy priorities               |        |
| Create "rules of the game"                                                                 |        |
| Price is a factor of cost                                                                  |        |
| Model needs to cover local discussions                                                     |        |
| Reflect diversity to hedge risk and add value                                              |        |





| Group 4                                                                                | I      |
|----------------------------------------------------------------------------------------|--------|
| Comment                                                                                | # Dots |
| What is the economic impact?                                                           | 11     |
| Local jobs, underrepresented groups                                                    |        |
| Creating broader social impact                                                         |        |
| Is LADWP the best to answer this question?                                             |        |
| What are the economics – rate impacts                                                  |        |
| Distribution system resilience (grid modernization)                                    | 8      |
| Smart grid and demand-side management                                                  |        |
| Near term decisions about long term assets (stranded assets)                           | 7      |
| Reliability                                                                            | 6      |
| Timeline                                                                               | 4      |
| What is the commitment to implementation?                                              |        |
| Other commitments and goals and how they'll integrate                                  | 4      |
| DWP's balancing authority                                                              | 4      |
| Resource agnostic with objectives                                                      | 3      |
| How study looks at energy & ancillary resources                                        |        |
| Local emissions inside LA and outside LA                                               | 3      |
| Evolving technology – will technology at the end of life impact?                       | 2      |
| Setting up criteria for determining priorities upfront (2)                             | 2      |
| Will DWP re-up commitment to displacement beyond 2020?                                 | 1      |
| Future energy uses/ types – demand forecast                                            | 1      |
| What must this achieve?                                                                | 1      |
| Global emissions                                                                       | 1      |
| 100% renewable energy every hour or over time?                                         | 1      |
| Adaptability to change                                                                 | 1      |
| Carbon intensity                                                                       | 1      |
| Propulsion power – fleet electrification                                               |        |
| Storage                                                                                |        |
| Where to put it – location                                                             |        |
| Align timeline with 2030                                                               |        |
| Cost                                                                                   |        |
| Pace of transition and cost – alignment                                                |        |
| How will the new system fit with existing? Will the reliability be better or worse?    |        |
| Hold to same or higher standards                                                       |        |
| Look at resources allocated to different goals                                         |        |
| Is the current assumed to be the baseline?                                             |        |
| Is someone forecasting what's coming from the State? – current and future              |        |
| Regional context                                                                       |        |
| Cascading effects of system failure                                                    |        |
| Build with data foundation                                                             |        |
| Electrification of appliances in home                                                  |        |
| To what extend DWP has storage systems for gas                                         |        |
| How will dependancy impact?                                                            |        |
| Forecast future population growth                                                      |        |
| Current state of existing infrastructure – how much integration is in our distribution |        |
| system                                                                                 |        |
| How is this communicated to the public?                                                |        |





# **Appendix C**City Council Motion

ENERGY, CLIMATE CHANGE AND ENVIRONMENTAL JUSTICE COMMITTEE REPORT relative to developing and implementing partnerships with appropriate entities to determine what investments should be made to achieve 100 percent renewable energy portfolio.

Recommendations for Council action:

- 1. INSTRUCT the Los Angeles Department of Water and Power (LADWP) to formally incorporate into its research efforts the following:
  - a. An analysis by the Rate Payer Advocate on how each scenario fits within the current rate structure to include the impact, if any, each scenario would have on low income customers.
  - b. Incorporation of the CalEnviro Screen into each research area, and as the context for any analysis, study, and/or recommendation.
  - c. The prioritization of environmental justice neighborhoods as the first immediate beneficiaries of localized air quality improvements and greenhouse gas reduction.
- 2. INSTRUCT the LADWP to report in 60 days in regard to the proposed plan and stakeholder engagement process.

<u>Fiscal Impact Statement</u>: None submitted by the LADWP. Neither the City Administrative Officer nor the Chief Legislative Analyst has completed a financial analysis of this report.

Community Impact Statement: Yes

For: Greater Valley Glen Neighborhood Council Palms Neighborhood Council

## Summary:

On August 1, 2017, your Committee considered a December 1, 2016 LADWP report relative to developing and implementing partnerships with appropriate entities to determine what investments should be made to a achieve 100 percent renewable energy portfolio. According to the LADWP, over the years, it has been leading efforts to address the threat of climate change by taking steps to curb pollution and other greenhouse gases through initiatives that eliminate the use of coal as a generation resource and promote programs for greater reliance on renewable energy. In 2000, the LADWP set out to reduce load growth by 50 percent through the use of behind the meter renewables, energy efficiency, and local solar. In 2010, the LADWP achieved a milestone of delivering 20 percent renewable energy to its customers. Following that, in 2013, the LADWP's renewable portfolio grew to 23 percent of the total power supply and is currently on track to meet 25 percent by the end of 2016 and reach 50 percent on or before 2030.

A key element of the LADWP's renewable energy program is the development of local and utility-scale solar energy projects. Such projects have assisted the LADWP to meet its

utility-scale solar energy projects. Such projects have assisted the LADWP to meet its renewable energy targets and reduce its carbon footprint created by fossil fuel burning power plants while serving as vital catalysts for creating jobs and stimulating the green economy within the greater Los Angeles area. Similarly, in a landmark achievement, the LADWP significantly reduced its greenhouse gas emissions to 19 percent below its 1990 level in 2015 and is expected to achieve 40 percent reduction in greenhouse gas emissions below 1990 levels by 2017, which is 13 years earlier than the State of California's requirement of 40 percent greenhouse gas reduction below 1990 levels by 2030.

The LADWP will develop a plan to manage long-term research partnerships with the region's universities, members of the Southern California Public Power Authority, the California Independent System Operator, neighboring utilities and other stakeholders with the objective of determining what research institutions are currently conducting research and development activities related to 100 percent renewable energy and to provide a framework for partnering with the United States Department of Energy's Mission Innovation initiative. In addition to research and development efforts, the 100 percent renewable energy initiative will include a robust outreach and stakeholder engagement process. Effective engagement will assist the LADWP to anticipate and manage emerging issues, promote productive collaboration, and improve the overall decision making process. Therefore, a wide range of stakeholder interests will be represented as part of the process.

After further consideration and having provided an opportunity for public comment, the Committee moved to recommend instructing the LADWP to: incorporate into its research effort the following:

- a. An analysis by the Ratepayer Advocate on how each scenario fits within our current rate structure, including the impact, if any, each scenario would have on low-income customers.
- b. Incorporation of the CalEnviro Screen into each research area, and as the context for any analysis, study, and/or recommendation.
- c. The prioritization of environmental justice neighborhoods as the first immediate beneficiaries of localized air quality improvements and greenhouse gas reductions.

Also, the Committee recommended instructing the LADWP to report back in 60 dayswith updates on the proposed plan and stakeholder engagement process. This matter is now submitted to Council for its consideration.

Respectfully Submitted,

ENERGY, CLIMATE CHANGE AND ENVIRONMENTAL JUSTICE COMMITTEE

MEMBER VOTE
MARTINEZ: YES
KORETZ: YES

KREKORIAN: YES CEDILLO: YES O'FARRELL: YES

ARL 8/1/17

-NOT OFFICIAL UNTIL COUNCIL ACTS-





## **Appendix D**

Advisory Group - Individual Check-in Telephone Calls Summary





## City of Los Angeles 100% Renewable Energy Study Advisory Group - Individual Check-in Telephone Calls SUMMARY

Prepared by Kearns & West November 8, 2017

## Introduction

The Advisory Group for the City of Los Angeles 100% Renewable Energy Study was convened in June 2017 and has met twice (in June and August, 2017). Following the first two meetings, the facilitator for the Advisory Group process conducted check-in calls with the Advisory Group members in September and October 2017. The purpose was to solicit feedback on the meeting logistics (format, schedule, lunch, etc.), and to hear perspectives, ideas, and questions about the launch of the study and considerations for the future process.

The facilitator scheduled check-in calls with Advisory Group members via email, and approximately 60% of the members responded and participated. Attachment A lists the participants.

Five questions generally guided the calls:

| Question 1 | Do you have any feedback on the meeting room set up, parking, meeting length and format, lunch, etc.?                                                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 2 | When thinking about the City Council motion and the multiple stakeholder interests, what will make the study successful?                                                                                                                                       |
| Question 3 | Can you give an example or two of similar types of studies that got it right – the analysis, modeling tools, balancing of many variables, and/or conclusions that were particularly illuminating or enlightening? What was the factor that made it successful? |
| Question 4 | What types of discussion formats have you been part of in other groups that should be considered for this Advisory Group?                                                                                                                                      |
| Question 5 | Is there anything else that you would like to tell us?                                                                                                                                                                                                         |

## **Themes**

The conversations during the calls spanned a wide range of topics and perspectives, as expected given the diversity of the stakeholder interests represented in the Advisory Group. Nonetheless, there was overlap on topics, which have been distilled into the themes noted below. Please note that order does not denote any priority or ranking.





- Better Environmental Justice Community Representation: The need for involvement of representatives from environmental justice communities at meetings was noted by some members, coupled with the request for LADWP to add representation as soon as possible.
- Discussion Activities for Greater Participation by All Members: The size of the
  Advisory Group seems large to many members, but also necessary in order to
  capture multiple stakeholder perspectives. Many suggestions were provided about
  using discussion and input activities designed to ensure that all members can equally
  participate in meetings.
- Enthusiasm for NREL, Recognition of LADWP's Role: High levels of confidence were expressed about NREL's lead role in the study, but a number of comments were made about incorporating LADWP knowledge, data, and staff involvement.
- Equalizing Knowledge Base While Utilizing Special Expertise: There was
  recognition that Advisory Group members have different foundational knowledge
  about electricity, the LADWP power system, the regional grid, etc. Providing
  webinars, supplemental reading materials, focused learning sessions, etc. were
  considered by many as important. At the same time, others talked about making use
  of the unique knowledge that individual members bring to the process.
- Meeting Logistics: Overall, members reported that the schedule, timeline, and
  location of the meetings are working well. Lunch and refreshments received the most
  comments -- requests were made for vegan and gluten-free options, less packaging
  for reduced waste, and hot coffee throughout the meetings. Another common
  request was providing a list of scheduled meetings six to 12 months out.
- Overall Study Process -- More Information Needed: Many expressed a need to know more comprehensive information about the study process, including how the Advisory Group and Working Teams fit into the process.
- Pre-Meeting Distribution of Agendas and Meeting Materials: Calls for premeeting materials distribution was common, so that members could review and reflect and formulate input, plus have the opportunity to consult with colleagues within their respective organizations/agencies.
- Strategy for Results Communication: The importance of effective communication of study results was mentioned many times, along with encouragement to start





developing the communication strategy now, including potential for video clips and well-written and concise executive summaries.

- Substantive and Meaningful Advisory Group Input: While most Advisory Group
  members expressed optimism about the commitment to stakeholder engagement,
  many expressed the importance of substantive Advisory Group discussion on the
  inputs and building blocks for the study.
- Urgency and Comprehensiveness: A number of Advisory Group members
  emphasized the need to expedite the study and launch implementation, within the
  context of the advance of climate change. Many members also discussed the
  importance of a thorough, complete, and defensible study, which will be important for
  successful implementation.





## Attachment A Participants

The following Advisory Group members participated in the check-in calls:

- Leslie Abbott, IBEW Local 18
- Kendal Asuncion, Los Angeles Chamber of Commerce
- Carlos Baldenegro, Port of Los Angeles (POLA)
- Erica Blyther, Los Angeles World Airports (LAWA)
- Jim Caldwell, Center for Energy Efficiency and Renewable Technology
- Christos Chrysiliou, Los Angeles Unified School District
- Jack Durland, Valero Energy Corporation
- Hilary Firestone, Natural Resource Defense Council
- Evan Gillespie, Sierra Club
- Matt Hale, Office of Councilmember Paul Krekorian CD 2
- Ernie Hidalgo, Neighborhood Council Sustainability Alliance
- Jack Humphreville, Neighborhood CouncilLADWP Advocacy Committee
- Nurit Katz, University of California, Los Angeles (UCLA) with Bonnie Bentzin, Deputy CSO alternate, Cassie Rauser, Director of the Sustainable LA Grand Challenge, and Mark Gold, AVC of Environment and Sustainability
- Michelle Kinman, Environment California Research and Policy Center
- Andrea Leon-Grossman, Food and Water Watch with Alexandra Nagy, Food and Water Watch
- Cris (Emmanuel) Liban, Los Angeles County Metro
- Loraine Lundquist, California State University, Northridge
- Danielle Osborn Mills, American Wind Energy Association
- Tim O'Connor, Environmental Defense Fund
- Shane Phillips, Center City Association of Los Angeles
- Fred Pickel and Camden Collins, LA Office of Accountability
- Rafael Prieto, City of Los Angeles Chief Legislative Analyst
- Andy Shrader, Office of Paul Koretz CD 5 (E&E)
- Allison Smith, Southern California Gas
- Mike Webster, Southern California Public Power Authority
- Tony Wilkinson, Neighborhood Council DWP MOU Oversight Committee





# **Appendix E**Advisory Group Roster





## 100% Renewable Energy Advisory Group

| Organization                                                    | Primary                 | Alternate            |
|-----------------------------------------------------------------|-------------------------|----------------------|
| American Wind Energy Association (AWEA)                         | Danielle Osborn Mills   |                      |
| California Energy Storage Alliance (CESA)                       | Alex Morris             | Molly Deringer Croll |
| California Solar Energy Industry Association (CalSEIA)          | Bernadette Del Chiaro   |                      |
| California State University, Los Angeles (Cal State LA)         | Feimeng Zhou            |                      |
| California State University, Northridge (CSUN)                  | Loraine Lundquist       | Austin Eriksson      |
| Center for Energy Efficiency and Renewable Technologies (CEERT) | Jim Caldwell            | Liz Anthony          |
| Center for Sustainable Energy                                   | Ben Airth               | TBD                  |
| Center for Sustainable Energy                                   | Sachu Constantine       | TBD                  |
| Central City Association                                        | Shane Phillips          | Marie Rumsey         |
| Chief Legistlative Analyst (CLA)                                | Rafael Prieto           |                      |
| City Attorney                                                   | Priscilla Kasha         | Jean Claude Bertet   |
| Communities for a Better Environment (CBE)                      | Bahram Fazeli           |                      |
| Council District 2                                              | Matt Hale               |                      |
| Council District 1                                              | Arturo Chavez           |                      |
| Council District 10                                             | Ed Johnson              |                      |
| Council District 11                                             | David Graham-Caso       |                      |
| Council District 13                                             | Star Parsamyan          |                      |
| Council District 3                                              | John Popoch             |                      |
| Council District 5                                              | Andy Shrader            |                      |
| Council District 6                                              | Ackley Padilla          | Jim Dantona          |
| NC DWP Advocacy Committee                                       | Jack Humphreville       |                      |
| NC-DWP MOU Committee                                            | Tony Wilkinson          |                      |
| Earth Justice                                                   | Angela Johnson Meszaros |                      |
| Environment California Research and Policy Center               | Michelle Kinman         |                      |
| Environmental Defense Fund (EDF)                                | Tim O'Connor            | Irene Burga          |
| Food and Water Watch                                            | Andrea Leon-Grossmann   | Alexandra Nagy       |
| IBEW – Local 18                                                 | Leslie Abbott           | Gus Corona           |
| Los Angeles Business Council (LABC)                             | Mary Leslie             | Zarui Chaparyan      |
| Los Angeles Chamber of Commerce (LA Chamber)                    | Jessica Duboff          | Kendal Asuncion      |
| Los Angeles Unified School District (LAUSD)                     | Christos Chrysiliou     | Talal Balaa          |
| Los Angeles World Airport (LAWA)                                | Cynthia Guidry          | TBD                  |

| Los Angeles World Airport (LAWA)                      | Kendrick Okuda        | TBD               |  |
|-------------------------------------------------------|-----------------------|-------------------|--|
| Los Angeles World Airport (LAWA)                      | Erica Blyther         | TBD               |  |
| Metropolitan Transportation Agency (Metro)            | Cris (Emmanuel) Liban |                   |  |
| Natural Resources Defense Fund (NRDC)                 | Hilary Firestone      |                   |  |
| Neighborhood Council Sustainability Alliance          | Ernie Hidalgo         | Tyler Aguirre     |  |
| Office of Public Accountability (Rate Payer Advocate) | Fred Pickel           | Camden Collins    |  |
| Office of the Mayor                                   | Lauren Faber O'Connor | N/A               |  |
| Office of the Mayor                                   | Ted Bardacke          | N/A               |  |
| Office of the Mayor                                   | Rebecca Andreassen    | N/A               |  |
| Port of Los Angeles (POLA)                            | Carlos Baldenegro     | Shaouki Aboulhosn |  |
| RepowerLA                                             | Jasmin Vargas         |                   |  |
| Sierra Club                                           | Evan Gillespie        | Graciela Geyer    |  |
| Skipping Stone Consulting - (EDF Consultant)          | Chris Therriault      | Steve Hinton      |  |
| South Coast Air Quality Management District           | Laki Tisopulous       |                   |  |
| Southern California Gas                               | Allison Smith         | Matt Gregori      |  |
| Southern California Public Power Authority (SCPPA)    | Mike Webster          | Ted Beatty        |  |
| Tesoro Refining and Marketing Company                 | Bobby Anderson        |                   |  |
| University of California, Los Angeles (UCLA)          | Nurit Katz            | Bonnie Bentzin    |  |
| University of Southern California (USC)               | Carol Fern            |                   |  |
| Valero Wilmington Refinery                            | Jack Durland          |                   |  |
| Valley Industry Commerce Association (VICA)           | Stuart Waldman        |                   |  |





## **Appendix F**

NREL Memo: Exploring Terms Commonly Used in Renewable Energy and Clean Energy





## Los Angeles 100% Renewable Energy Study Exploring Terms Commonly Used in Renewable Energy and Clean Energy

Many cities, companies, governments, and other organizations have set goals to reduce their environmental impact. Policies established to this end include achieving a certain proportion of energy generation from renewable resources, or achieving a specific carbon emissions target.

While the intent of these initiatives is similar across various organizations, the terms used to describe various targets and actions can be nebulous. Below is a guide to the terms commonly used to describe clean energy policies and programs. At the end, several questions for exploring the framework for the Los Angeles 100% Renewable Energy Study are listed.

## 1. Renewable Energy Resources:

The International Energy Agency (IEA) definition of *renewable energy* is "energy that is derived from natural processes (e.g., sunlight and wind) that are replenished at a higher rate than they are consumed." The U.S. Energy Information Administration defines renewable energy resources as "energy resources that are naturally replenishing but flow-limited. They are virtually inexhaustible in duration but limited in the amount of energy that is available per unit of time."

In applying these broad definitions to state- or organization-specific renewable energy targets, different entities have different criteria for which resources qualify as renewable. For example, the California Energy Commission (CEC) outlines what it considers renewable resources to be in its Renewable Portfolio Standard (RPS) Eligibility Guidebook<sup>iii</sup> and has specific eligibility requirements for biomethane, fuel cells, and hydroelectric resources. The CEC also no longer accepts contributions from a "water supply or conveyance system" or from municipal solid waste conversion as renewable resources.<sup>iv</sup>

Table 1 summarizes eligible renewable resources for several states and cities, as well as under other government and nongovernmental organization definitions. The most common restriction on renewable eligibility is for hydropower, with many entities limiting the size of projects eligible for inclusion.





 Table 1. Renewable Resource Eligibility for Various States, Cities, and Organizations (\*Additional requirements specified

| Resource                                | California | New Jersey | Colorado            | Austin,                                               | ΙΕΑ <sup>ν</sup> | EIA <sup>vi</sup> | Renewable Energy            | REN 21 <sup>viii</sup> | RE100 <sup>ix</sup>             |
|-----------------------------------------|------------|------------|---------------------|-------------------------------------------------------|------------------|-------------------|-----------------------------|------------------------|---------------------------------|
| Resource                                | RPS        | RPS        | RPS                 | Texas RPS                                             | ILA              | LIA               | Certificates <sup>vii</sup> | NLIV ZI                | KLIOO                           |
| Wind and Solar                          | ٧          | ٧          | ٧                   | ٧                                                     | ٧                | ٧                 | ٧                           | ٧                      | ٧                               |
| Hydro <sup>1</sup>                      | ٧*         | ٧          | ٧                   | ٧                                                     | ٧                | ٧                 | ٧                           | ٧                      | ٧                               |
| Bioenergy                               | √*         |            | √<br>(biomass)<br>* | √ (biomass<br>or biomass-<br>based waste<br>products) | ٧                | √<br>(biomass)    | √ (biomass)                 | √<br>(biopower)        | √<br>(biomass<br>and<br>biogas) |
| Landfill Gas                            | ٧          | ٧          |                     | ٧                                                     |                  |                   |                             |                        |                                 |
| Fuel Cell                               | ٧          | ٧          |                     | ٧                                                     |                  |                   |                             |                        |                                 |
| Geothermal                              | ٧          | ٧          | ٧                   | ٧                                                     | ٧                | ٧                 | ٧                           | ٧                      | ٧                               |
| Municipal Solid<br>Waste<br>Conversion  | √*         |            |                     |                                                       |                  |                   |                             |                        |                                 |
| Ocean Thermal                           | ٧*         |            |                     |                                                       | ٧                | ٧                 |                             |                        | ٧                               |
| Ocean Wave                              | ٧*         | ٧          |                     | ٧                                                     | ٧                | ٧                 |                             |                        | ٧                               |
| Tidal Current                           | √*         | ٧          |                     | ٧                                                     | ٧                | ٧                 |                             |                        | ٧                               |
| Other Minor<br>Technologies             | ٧          | ٧          | ٧                   |                                                       |                  |                   |                             |                        | ٧                               |
| Tradable<br>Renewable<br>Energy Credits | ٧          |            | ٧                   |                                                       |                  |                   |                             |                        |                                 |

## 2. Low Carbon, Carbon Neutral, and Zero Carbon:

The terms *low carbon*, *carbon neutral*, and *zero carbon* apply to the accounting of carbon emissions and specific emissions reduction or net emissions targets. There are a number of accounting methods used to calculate carbon emissions. An example specific to the electricity sector is that under the Clean Power Plan, emissions can be calculated on a mass basis or on a per electricity generation basis.\* This distinction is particularly important to consider when discussing emissions reduction targets.

*Low carbon* implies a reduction in carbon emissions, but requires further quantification of the actual reduction, comparative metrics, and timescale. For example, the National Renewable Energy Laboratory's Low Carbon Grid Study for California evaluated the potential to cut electricity sector emissions from 2012 levels by 50% by 2030.<sup>xi</sup>

Carbon neutral, as defined by Merriam-Webster, "results in no net addition of carbon dioxide to the atmosphere" or "counterbalancing the emissions of carbon dioxide with carbon offsets." However, different entities have different interpretations of which fuels can be considered carbon neutral and which technologies or strategies can be employed to make a process carbon neutral (e.g., carbon

1

<sup>&</sup>lt;sup>1</sup> There is significant variability in how institutions handle hydro generating resources. Some regions have exceptions for small hydro, and existing hydro resources. These constraints are often based on sustainability and ecological versus carbon considerations.





offsets). A carbon offset can include investment in renewable energy, energy efficiency, and/or reforestation—activities that "offset" the direct emissions of an organization by reducing emissions elsewhere. As an example, in 2013 the University of California pledged to be carbon neutral by 2025. Through its carbon neutrality initiative, the university plans to develop and purchase biogas to offset its natural gas consumption, develop alternative renewable energy sources, purchase power through long-term contracts, and manage a portfolio of allowances and offsets, among other strategies. You

Zero carbon is an increasingly common term to hear in policy circles. The term is most frequently used in the urban planning where it is used to define building standards. In the power sector, zero carbon or carbon free, can be used to refer to any generating technology that does not result in the emission of carbon dioxide.

### 3. Discussion

The literature and public policy experiences highlight a few key challenges for planning power systems with very low or zero carbon emissions. Historically, the focus has been on renewable resources, however, as targets grow from relatively modest levels of 20-50% renewable resources, several challenges present themselves.

- 1) Should biomass and bio fuels, which are generally assumed to be carbon neutral, be considered a renewable resource even though they emit carbon when burned?
- 2) Should existing hydro generation, which does not have any emissions, but has some sustainability and ecological shortcomings, be part of the transition to a 100% clean electricity sector?
- 3) Does nuclear energy, which is not renewable, but is carbon free, play a role in a decarbonized electricity system.
- 4) Should policies designed to combat climate change be focused on increasing renewables or decreasing carbon? Said another way, what are the differences between policies targeted at reducing/removing carbon versus promoting renewables.





### References

international Energy Agency. Renewables; https://www.iea.org/topics/renewables/ (accessed Aug. 8, 2017).

<sup>&</sup>quot; U.S. Energy Information Administration. *Glossary*; https://www.eia.gov/tools/glossary/index.php?id=R (accessed Aug. 8, 2017).

iii California Energy Commission. RPS Eligibility Guidebook, Ninth Edition Revised; 2017.

<sup>&</sup>lt;sup>iv</sup> California Energy Commission. RPS Eligibility Guidebook, Ninth Edition Revised; 2017.

<sup>&</sup>lt;sup>v</sup> International Energy Agency. *Renewables*; https://www.iea.org/topics/renewables/ (accessed Aug. 8, 2017).

<sup>&</sup>lt;sup>vi</sup> U.S. Energy Information Administration. *Glossary*; https://www.eia.gov/tools/glossary/index.php?id=R (accessed Aug. 8, 2017).

vii Center for Resource Solutions. Green-e Energy Code of Conduct; San Francisco, 2016.

viii Renewable Energy Policy Network for the 21st Century. Renewables 2017 Global Status Report; 2017.

ix RE100. Requirements of RE100 companies; http://there100.org/going-100 (accessed Aug. 10, 2017)

<sup>&</sup>lt;sup>x</sup> U.S. Environmental Protection Agency. *Analysis of the Impacts of the Clean Power Plan*; https://www.eia.gov/analysis/requests/powerplants/cleanplan/ (accessed Aug. 9, 2017).

xi Brinkman, G.; Jorgenson, J.; Ehlen, A.; Caldwell, J. H.; Brinkman, G.; Jorgenson, J.; Ehlen, A.; Caldwell, J. H. Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California. 2016, No. January.

<sup>&</sup>lt;sup>xii</sup> Merriam-Webster. *carbon-neutral*; https://www.merriam-webster.com/dictionary/carbon-neutral (accessed Aug. 8, 2017).

<sup>&</sup>lt;sup>xiii</sup> Environmental Protection Authority Victoria. *Carbon Management at EPA*; http://www.epa.vic.gov.au/about-us/environmental-performance/carbon-management-at-epa (accessed Aug. 10, 2017).

xiv University of California Office of the President. *Carbon Neutrality Initiative*; http://ucop.edu/carbon-neutrality-initiative/index.html (accessed Aug. 9, 2017).

v University of California: UCOP Buisness Operations. *President's Initiative: The First Research University to Achieve Carbon Neutrality;* http://ucop.edu/sustainability/\_files/carbon-neutrality2025.pdf (accessed Aug. 9, 2017).