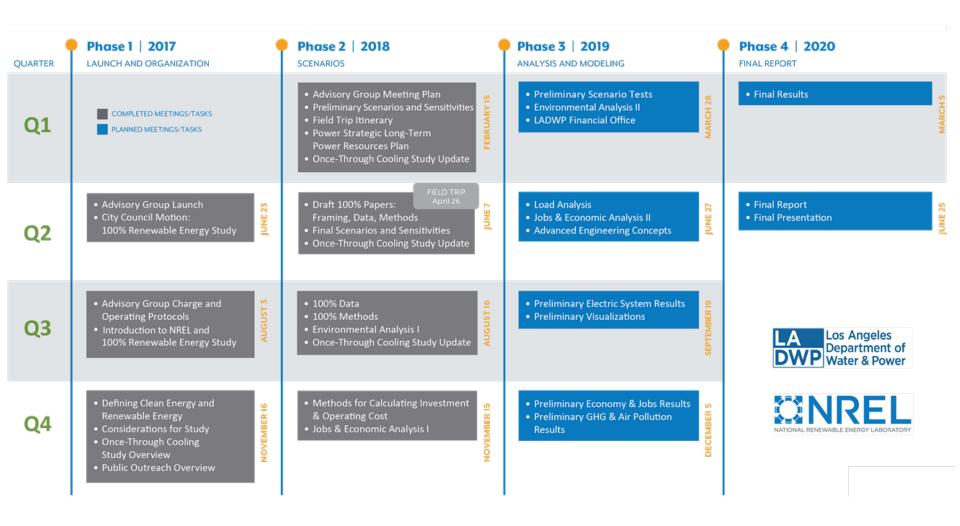


Today's Focus

- SB 100 and the LA 100 Scenarios
- Jobs and Economic Development Analysis
- Accounting for Costs in Power Systems Planning

Agenda


- Call to Order
- Welcome and Introductions
- Update Exchange
- Senate Bill 100 Overview
- Scenario Updates
- Jobs and Economic Development Analysis **
- Lunch
- Accounting for Costs in Power Systems Planning **
- Wrap-up and Next Steps

^{**}Q&A and Discussion

Welcome and Introductions

Update Exchange

Advisory Group Meeting Plan

Tips for Productive Discussions

- Let one person speak at a time
- Help to make sure everyone gets equal time to give input
- Keep input concise so others have time to participate
- Actively listen to others, seek to understand perspectives
- Offer ideas to address questions and concerns raised by others
- Hold questions until after presentations

Senate Bill 100 100 Percent Clean Energy Act of 2018

Governor Brown signed into law September 10, 2018

LeiLani Johnson Kowal
Legislative & Intergovernmental Affairs
November 15, 2018

California Legislative History: Statewide RPS

- Senate Bill 1078 (Sher) (2002)
 - 20% by 2017
- Senate Bill 107 (Simitian) (2006)
 - 20% renewables by 2010
- Senate Bill 2 x1 (Simitian) (2011)
 - 20% renewables by 12/31/2013
 - 25% renewables by 12/31/2016
 - 33% renewables by 12/31/2020
- SB 350 (De León) (2015)
 - 40% renewables by 12/31/2024
 - 45% renewables by 12/31/2027
 - 50% renewables by 12/31/2030

Senate Bill 100 (De León) 100 Percent Clean Energy Act of 2018

Two Parts

- Accelerated RPS Targets under California RPS Program (to 60%)
- Zero Carbon Policy (for the remaining 40%)

Part 1: RPS Targets (regulatory)

- Accelerates the RPS obligations for retail sellers IOUs, CCAs, ESPs, and POUs as follows:
 - 40% increased to 44% by 2024
 - 45% increased to 52% by 2027
 - 50% increased to 60% by 2030

Part 2: Zero Carbon Policy (non-regulatory/planning goal)

- 100% retail sales of electricity by December 31, 2045 = renewables + zero carbon resources.
 - No increase in carbon emissions in the western grid
 - No resource shuffling

Senate Bill 100 (De León) 100 Percent Clean Energy Act of 2018

Zero Carbon Policy

- CPUC/CEC/CARB shall ensure actions related to 100% goal:
 - Maintain and protect the safety, reliable operation, and balancing of the electric system.
 - Prevent unreasonable impacts to electric, gas, water customer rates and bills, taking into consideration economic and environmental costs and benefits of renewables and zero carbon resources
 - Lead to adoption of policies and actions in other sectors to obtain GHG reductions that ensure equity between other sectors and electricity sector
 - Not affect rules, requirements for oversight of and enforcement of the California RPS Program

Senator De León: Letter to the Senate Daily Journal on SB 100

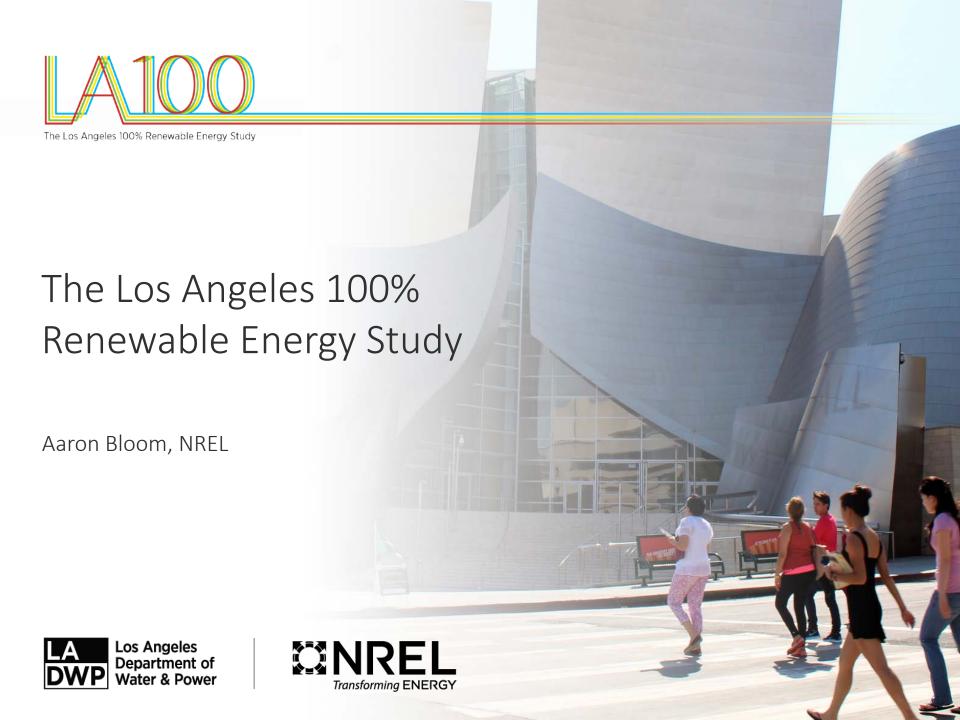
Resource Shuffling Prohibition

 Should be implemented in a manner that does not run afoul of the Dormant Commerce Clause

SB 100 has two separate provisions:

1) Accelerated RPS, and 2) Zero-Carbon Policy

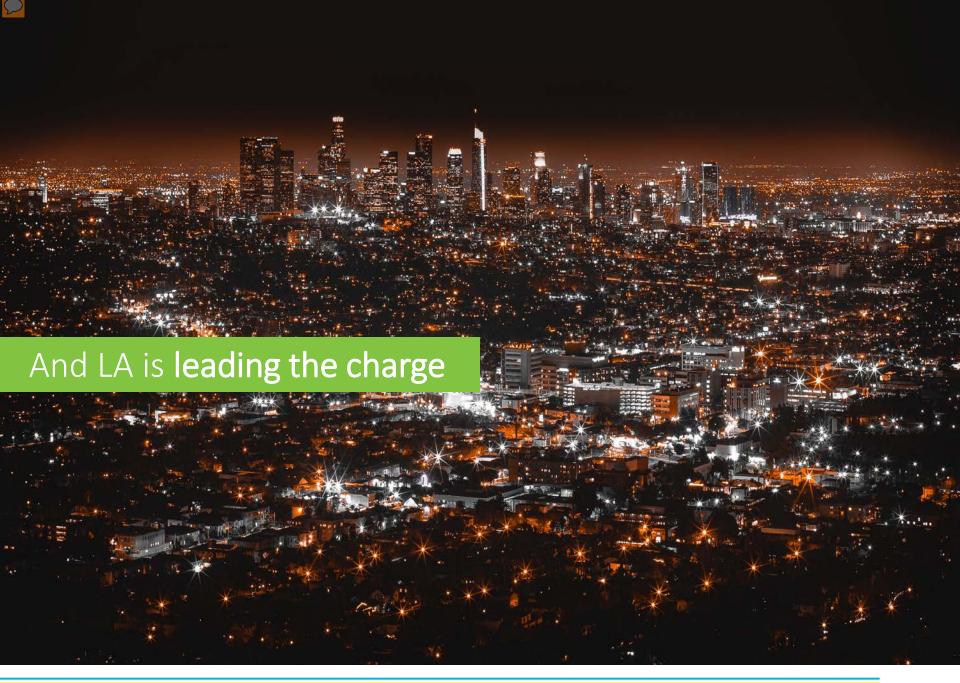
Zero-Carbon Policy:


- Includes all zero-carbon resources
 - RPS-eligible resources and existing zero-carbon resources serving California customers
- Technology neutral
 - If a resource does not produce GHG emissions it is eligible to meet the 100% target
- Existing obligations
 - Does not seek to require retail sellers to default on existing contractual obligations to deliver electricity to California customers from existing zero-carbon generation facilities

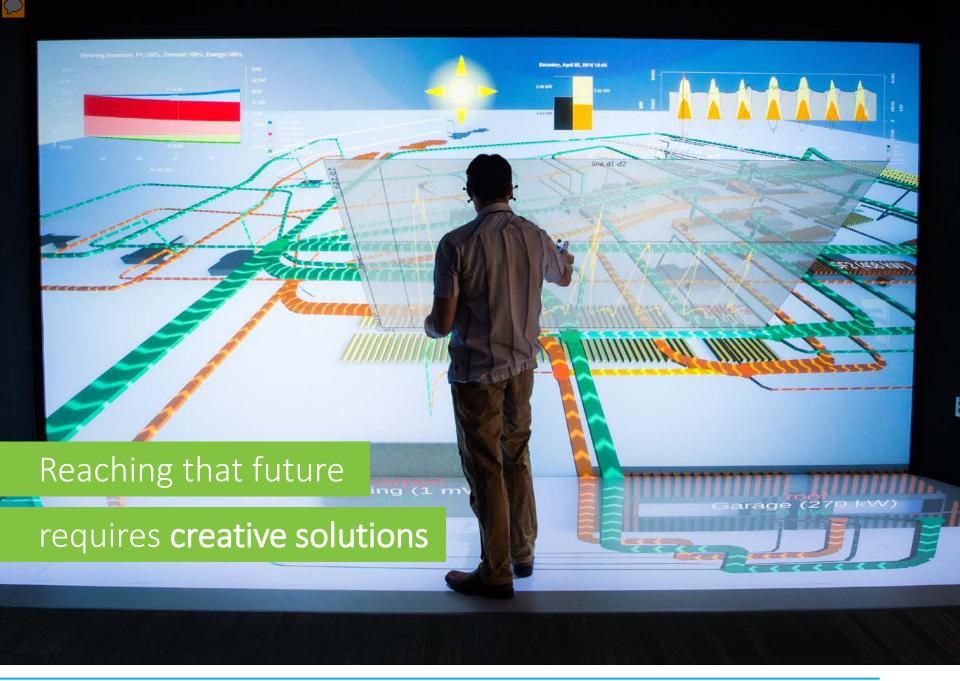
Senate Bill 100: Zero Carbon Policy Next Steps?

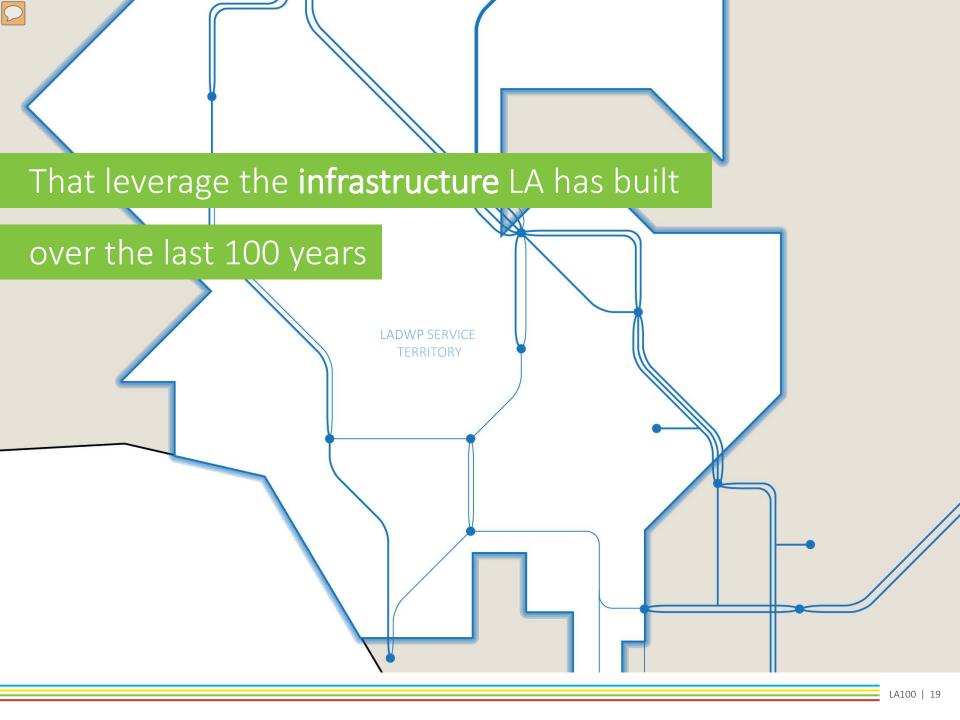
CPUC/CEC/CARB

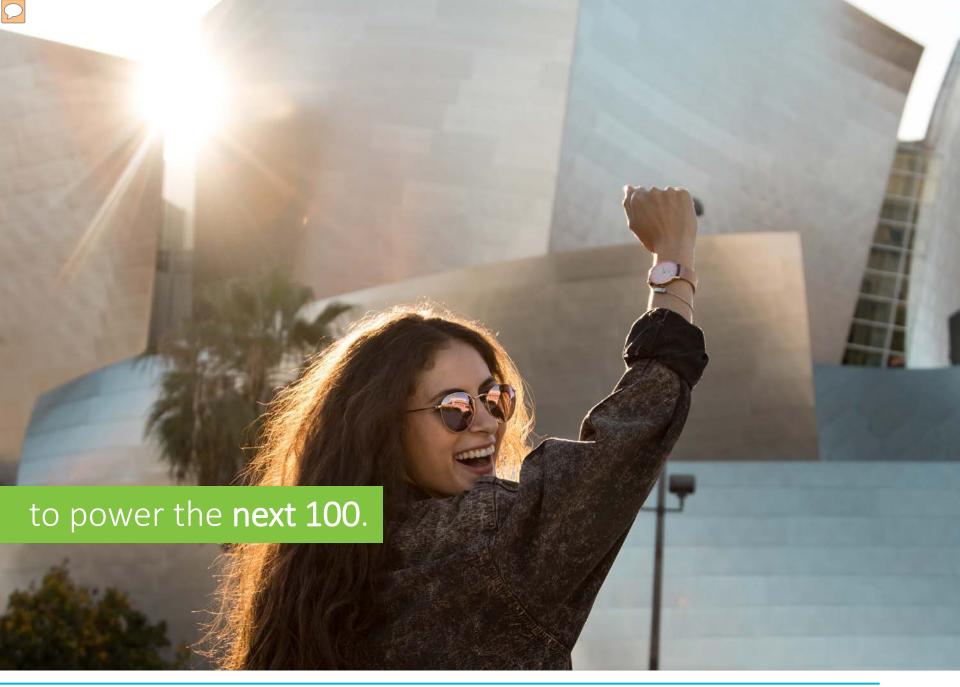
- Utilize programs authorized under existing statutes to achieve policy
- In consultation with all California Balancing Authorities, in a public process, issue joint report to Legislature by 1/01/2021, and every 4 years thereafter:
 - 1. Review policy focused on technologies, forecasts, transmission, safety, environmental and public safety protection, affordability, system and local reliability
 - 2. Evaluate potential benefits and impacts on system and local reliability
 - 3. Evaluate anticipated financial costs and benefits to electric, gas, and water utilities, including customer rate impacts and benefits
 - 4. Barriers to, and benefits of, achieving the policy
 - 5. Alternative scenarios in which the policy can be achieved and estimated costs and benefits of each scenario

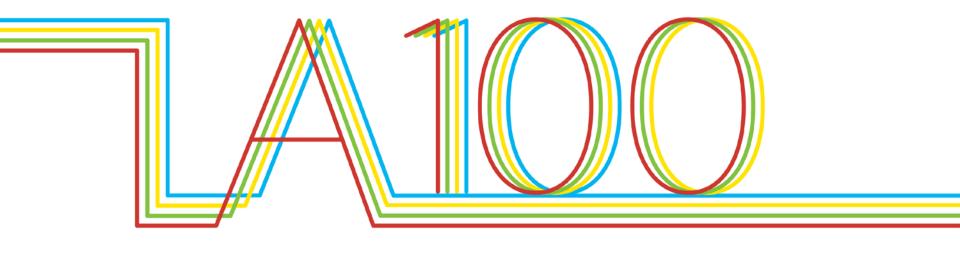


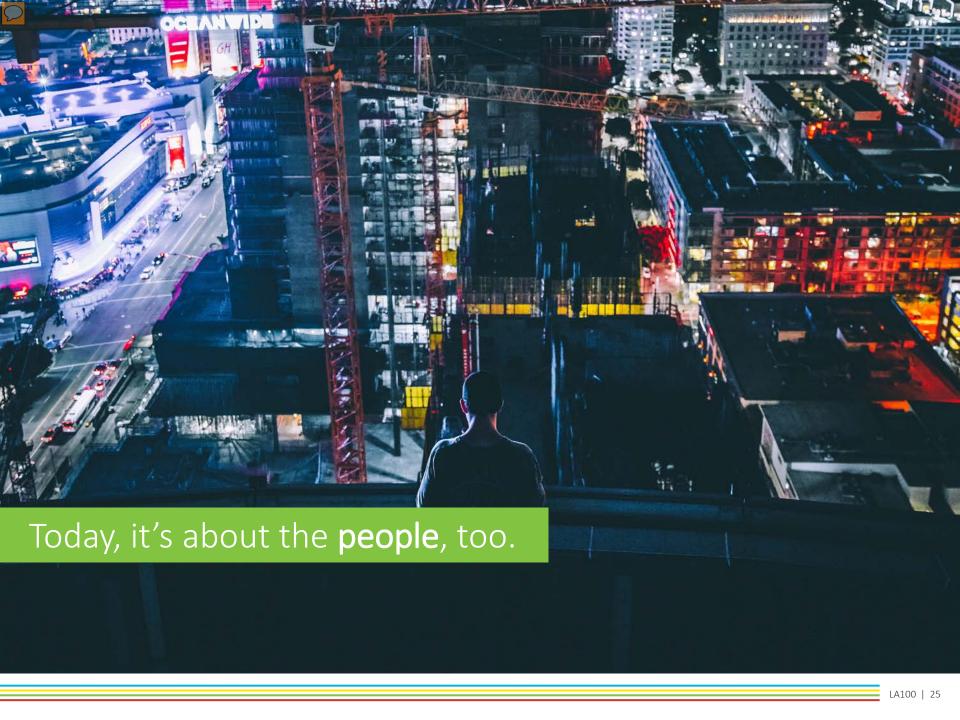
California aims to be entirely green powered by 2045, as Gov. Jerry Brown signs SB 100


Climate change is "a real and present danger to California and to the people of the world," Brown said.


by James Rainey / Sep.10.2018 / 1:39 PM ET / Updated Sep.10.2018 / 5:51 PM ET

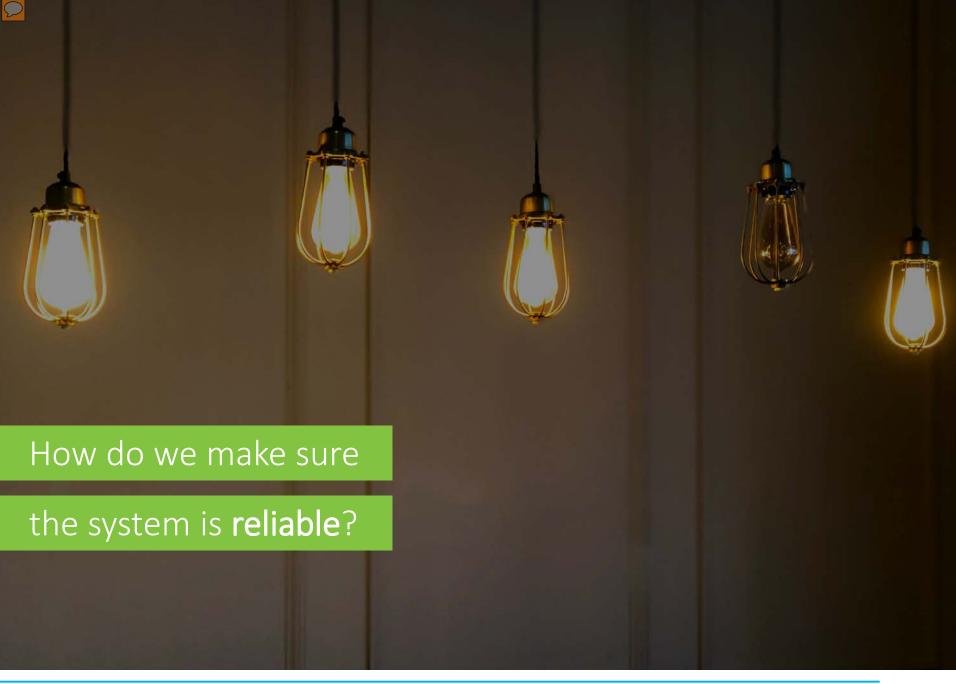


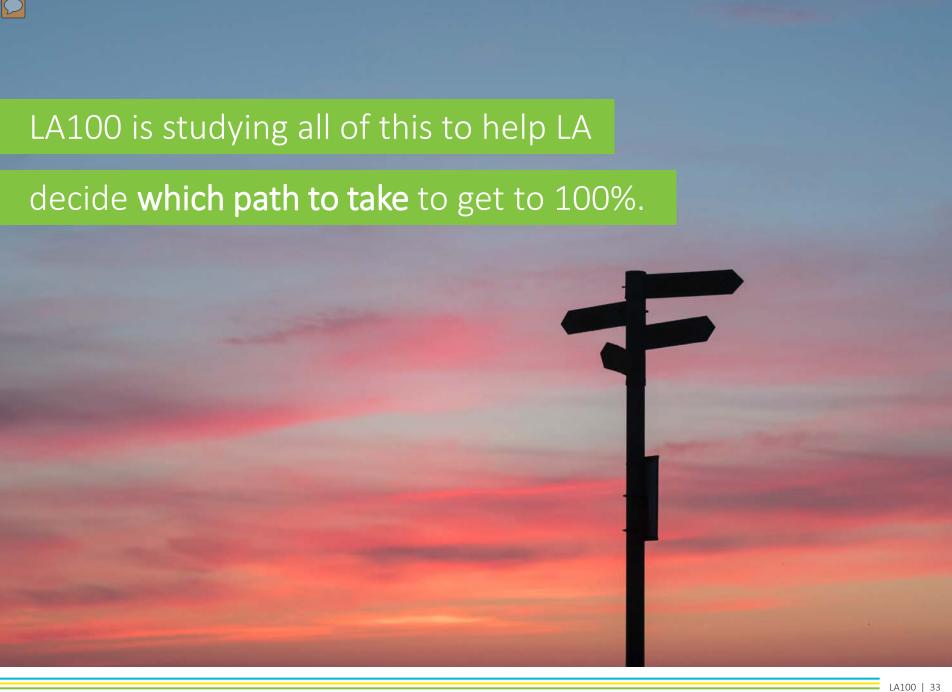


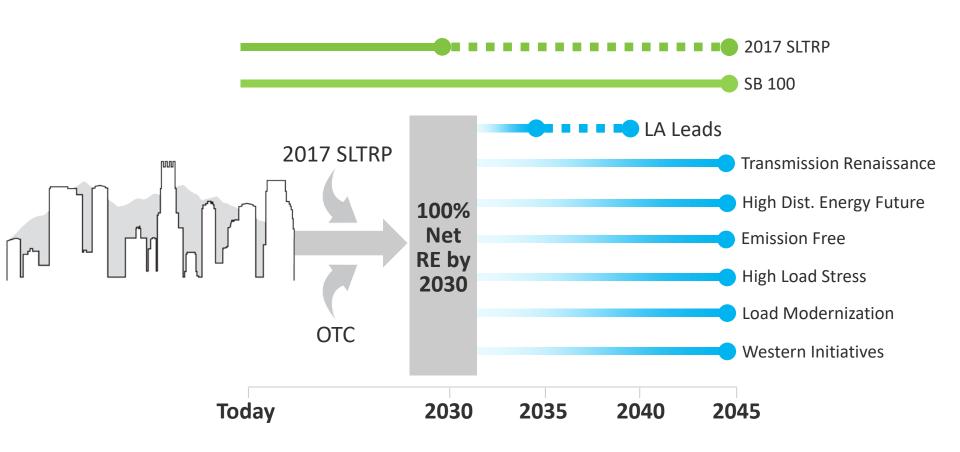


The Los Angeles 100% Renewable Energy Study

will give LA the information it needs to get there.


Here's our approach.





Here are the scenarios.

Scenario Framework

Scenario Descriptions

	Scenario Name	Scenario Abbreviation	Net 100 RE* Target Year	Final Target Year	Scenario Description
Reference	LADWP 2017 SLTRP Recommended Case	DWP-SLTRP17	-	-	The DWP-SLTRP scenario matches the planned generation, tranmission, and distribution system investments, as well as the planned enduse initiativesenergy efficiency, demand response, and electrificationfrom LADWP's 2017 SLTRP Recommended Case. In addition, this scenario will incorporate relevant results from the OTC Study. Under this scenario, renewable generation comprises 65% of load by 2036.
	Senate Bill 100	SB100	-	2045	The SB100 scenario ensures that the LADWP system is compliant with Senate Bill100; 60% net renewable energy by 2030 & 100% carbon-free energy by 2050.
LA100	LA-Leads	LA-Leads	2030	2035/2040**	Through more aggressive pursuit of both energy efficiency, demand response, and electrification initiatives, as well as rapid deployment of both distributed and utility-scale resources, a 100% clean energy system is achieved by 2035. Importantly, the Palo Verde Nuclear Plant continues to provide generation through the early 2040s, but is retired by and offset with new renewable sources by 2045. RECs are not allowed as part of compliance.
	Transmission Renaissance	Trans+	2030	2045	New transmission corridors (along with upgrades to existing corridors) allow rapid increases in the availability of transmission capacity; adoption of distributed generation is decreased relative to the 100-RE case, due to the decreased barriers to importing utility scale renewable generation from out-of-basin. RECs are not allowed as part of compliance.
	High Distributed Energy Future	Hi-DEF	2030	2045	Adoption of distributed generation is aggresively pursued to make up for decreased ability to import out-of-basin renewable generation; similarly, energy efficiency, demand response, and electrification are rapidly implemented. RECs are not allowed as part of compliance.
	Emissions Free	No-Emis	2030	2045**	Compliance must be achieved without any combustion-based generation (including biomass and biofuels), but nuclear generation is allowed to contribute towards compliance. RECs are not allowed as part of compliance.
	High Load Stress	HiStress	2030	2045**‡	Identical to the SB-100 casei.e. net carbon-freebut load evolves in a way that is highly challenging for renewable integration: electrification is large and rapid, while flexibility in load (demand response) and efficiency are minimal.
	Load Modernization	Load-Mod	2030	2045	Energy efficiency measures, demand response measures, and electrification are rapidly implemented through robust incentives, programs, and technology breakthroughs; RECs are not allowed as part of compliance.
	Western Initiatives	WECC	2030	2045	Variable renewable generation achieves high penetration in the rest of WECC; RECs are not allowed as part of compliance.

^{*&#}x27;All LA100 scenarios (blue) will reach 100% net renewable energy by 2030. This approach mirrors the one taken by many corporations and municipals to reach 100% renewable energy. It allows LADWP to meet a portion of the 100% goal using Renewable Energy Credits (RECs) that net out the emissions caused by LADWP generation.

^{**&#}x27;Nuclear generation is allowed to contribute towards the 100% target

[†]RECs can be used as a component of compliance

Old Scenario Matrix

		LADWP 2017 IRP Recommended Case	100% RE Reference	LA-Leads	Transmission Renaissance	High Distributed Energy Future	Emissions Free	Net 100%	Load Modern- ization	Western Initiatives
	Compliance Year:		2045	2035/2040	2045	2045	2045	2045	2045	2045
	Biomass		Υ	Υ	Υ	Υ	N	Υ	Υ	Υ
	Biogas		Υ	Υ	Υ	Υ	N	Y	Υ	Υ
	Electricity to Fuel (e.g. H2)		Y	Y	Υ	Υ	Υ	Y	Υ	Υ
Technol-	Fuel Cells		Y	Y	Y	Y	Υ	Y	Υ	Υ
ogies Eligible	Hydro - Existing	Martala a 2047 IDD	Y	Y	Y	Y	Y	Υ	Υ	Y
in the	Hydro - New	Matches 2017 IRP Technology Mix	N V	N	N	N	N	N	N	N
Compliance	Hydro - Upgrades	rechnology with	Υ	Y	Y	Y	Y	Y	Y	Y
Year	Natural Gas		N N	N Y	N	N	N	Y	N	N N
	Nuclear - Existing Nuclear - New		N N	N N	N N	N N	N N	N N	N N	N N
	Wind, Solar, Geo		Y	Y	Y	Y	Y	Y	Y	Y
	Storage		Y	Y	Y	Y	Y	Y	Y Y	Y
DG	Distributed Adoption	Reference	Balanced	High	Low	High	Balanced	Balanced	Balanced	Balanced
RECS	Financial Mechanisms (RECS/Allowances)	-	N	N	N	N	N	Yes	N	N
	Energy Efficiency	Reference	Moderate	High	Moderate	High	Moderate	Moderate	High	Moderate
Load	Demand Response	Reference	Moderate	High	Moderate	High	Moderate	Moderate	High	Moderate
	Electrification	Reference	Moderate	High	Moderate	High	Moderate	Moderate	High	Moderate
Trans- mission	New or Upgraded Transmission Allowed?	Matches 2017 IRP	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	New Corridors Allowed	No New Transmission	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors
WECC	WECC VRE Penetration	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference	High

Updated Scenario Matrix-changes

		Referen	ice				LA100			
		LADWP 2017 SLTRP Recommended Case	SB 100	LA-Leads	Transmission Renaissance	High Distributed Energy Future	Emissions Free	High Load Stress	Load Modern- ization	Western Initiatives
					Al	l LA100 cases reach	100% Net Renew	able Energy by 20	030	
	Compliance Year:	2045	2045	2035/2040	2045	2045	2045	2045	2045	2045
	Biomass Biogas Electricity to Fuel (e.g. H2)		Y Y Y	Y Y Y	Y Y Y	Y Y Y	N N Y	Y Y Y	Y Y Y	Y Y Y
Technologies Eligible	Fuel Cells Hydro - Existing		Y Y	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y
in the Compliance Year	Hydro - New Hydro - Upgrades Natural Gas	Matches 2017 SLTRP Technology Mix	N Y Y	N Y N	N Y N	N Y N	N Y N	N Y Y	N Y N	N Y N
Nuclear - Wind, Sol	Nuclear - Existing Nuclear - New Wind, Solar, Geo Storage		Y N Y Y	Y N Y Y	N N Y Y	N N Y Y	Y N Y Y	Y N Y Y	N N Y Y	N N Y Y
DG	Distributed Adoption	Reference	Balanced	High	Low	High	Balanced	Balanced	Balanced	Balanced
RECS	Financial Mechanisms (RECS/Allowances)	Υ	Υ	N	N	N	N	Υ	N	N
	Energy Efficiency	Reference	Moderate	High	Moderate	High	Moderate	Reference	High	Moderate
Load	Demand Response	Reference	Moderate	High	Moderate	High	Moderate	Reference	High	Moderate
	Electrification	Reference	Moderate	High	Moderate	High	Moderate	High	High	Moderate
Transmission	New or Upgraded Transmission Allowed?	Matches 2017 SLTRP	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	New Corridors Allowed	No New Transmission	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors
WECC	WECC VRE Penetration	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference	High

Updated Scenario Matrix

		Referen	ce		LA100						
		LADWP 2017 SLTRP Recommended Case	SB 100	LA-Leads	Transmission Renaissance	High Distributed Energy Future	Emissions Free	High Load Stress	Load Modern- ization	Western Initiatives	
					Al	I LA100 cases reach	100% Net Renew	vable Energy by 2	030		
	Compliance Year:	2045	2045	2035/2040	2045	2045	2045	2045	2045	2045	
Technologies Eligible in the Compliance Year	Biomass Biogas Electricity to Fuel (e.g. H2) Fuel Cells Hydro - Existing Hydro - New Hydro - Upgrades Natural Gas Nuclear - Existing Nuclear - New Wind, Solar, Geo Storage	Matches 2017 SLTRP Technology Mix	Y Y Y Y Y N Y Y Y Y Y Y Y Y Y	Y Y Y Y Y N Y N Y N Y N Y N Y N Y N Y N	Y Y Y Y Y N N N N N Y	Y Y Y Y Y N N N N N Y	N N Y Y Y N Y N Y	Y Y Y Y Y N Y Y Y Y Y Y Y Y Y N Y Y	Y Y Y Y Y N N N N N Y Y	Y Y Y Y Y N N N N N Y Y	
DG	Distributed Adoption	Reference	Balanced	High	Low	High	Balanced	Balanced	Balanced	Balanced	
RECS	Financial Mechanisms (RECS/Allowances)	Υ	Y	N	N	N	N	Y	N	N	
Load	Energy Efficiency Demand Response Electrification	Reference Reference Reference	Moderate Moderate Moderate	High High High	Moderate Moderate Moderate	High High High	Moderate Moderate Moderate	Reference Reference High	High High High	Moderate Moderate Moderate	
Transmission	New or Upgraded Transmission Allowed?	Matches 2017 SLTRP	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	New Corridors Allowed	No New Transmission	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	Only Along Existing or Planned Corridors	
WECC	WECC VRE Penetration	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Reference	High	

Summary of Changes in Light of SB 100

- Reference scenario was replaced by new SB 100 scenario
- New LA100 scenario was added to replace Net 100% scenario
 - High Load Stress
 - Designed to reflect what could happen if load grows and there is no improvement in energy efficiency
- All scenarios meet or exceed requirements of SB 100
- Goal of these changes is not to perfectly model SB 100
 - CPUC, CEC, and Courts will likely spend considerable time interpreting SB 100
 - NREL objective is to maintain schedule and include a reasonable representation of SB 100

Jobs and Economic Development Analysis

Overview

- City Council Motion
 - "Work with local academic institutions to examine...the potential for high quality careers and equitable local economic development, including local hiring programs.."
- Partnerships
 - University of Southern California
 - Prof. Adam Rose, Prof. Dan Wei
 - Cutler Consulting
 - Prof. Harvey Cutler, Prof. Martin Shields
- Cutler consulting will develop the model, USC is responsible for the analysis.
- Both will work with each other throughout the project

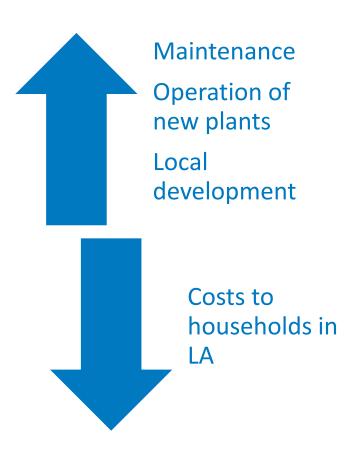
Model Selection

- Several modeling options, all commonly used
- All assume projects are feasible
- Input-Output (I-O)
 - "Gross" economic impacts that are based on demand
 - Cannot take into account changes such as changes in prices and taxes
 - Cannot estimate substitution between inputs (i.e., if pork becomes expensive perhaps households would eat more chicken)

RFMI

- Proprietary impact model that is based on I-O, CGE, and econometric models
- Some ability to change prices
- Computable general equilibrium (CGE)
 - Economic impact model that is custom built and highly flexible
 - Captures a highly detailed representation of an economy
 - All prices flexible and substitution is allowed

CGE Decision

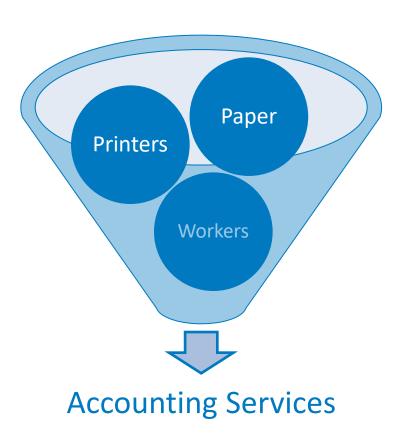

- Decision to use a CGE model
- CGE models capture detailed interactions between households, industries, government, and the region outside of the City of LA
- CGE models are flexible, so the electricity sector the focus of the study – can be modified to better capture details and differences between different renewable and fossil technologies

Unique Characteristics of CGE Model Used

- Model used was initially developed by Professor Cutler at Colorado State University
- Original intent was to be a regional model to capture impacts within focused areas
- NREL worked with Professor Cutler through the NREL Joint Institute for Strategic Analysis to refine the electric sector to capture specific types of energy deployment and operation

CGE Model

- Model captures changes in prices, taxes as well as demand for goods and services
- "Net" impact because these interactions are captured
- Positive economic growth from new capacity
- Potential downward pressure on growth from displaced fossil industries, higher costs for electricity



What the Model Doesn't Capture

- Impacts from activity outside of LA
 - Goods manufactured outside of the city such as solar panels or appliances
 - Services performed by companies outside of LA such as computer software providers or outside engineering firms
- Economic activity that might arise as a result of the LA100 project that aren't directly related to the project
 - Companies may choose to locate in LA because they value renewable energy or for branding
 - Economic activity may arise due to co-location benefits. For example, an electrical company that doesn't do much PV work may locate in LA to increase the pool of available electricians

Producing Detail – Base Data

- Social accounting matrix (SAM) is the core dataset that goes into the CGE model
- The SAM represents interactions between industries, workers, households, the government, and outside regions as inputs and outputs
- Every input such as goods industries use for production is an output provided by another sector
- I.e., an accounting firm provides accounting services and purchases paper from a paper manufacturer. Paper is an input for the accounting firm and an output from the paper manufacturer.

CGE Base Data: Social Accounting Matrix

Social accounting matrix (SAM) shows initial structure of the economy via inputs and outputs

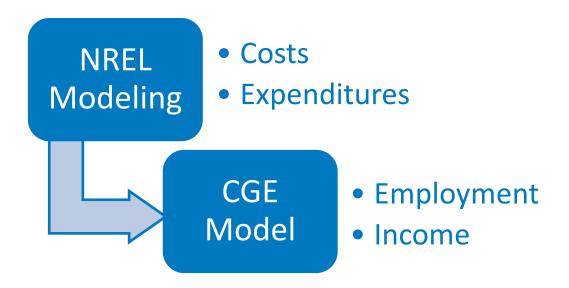
		Consumption (Inputs)				Final Demand (GDP)			
		Industry A	Industry B	Industry C	Households	Investment	Government	Rest of World (Net Exports)	
	Industry A								
Production (Outputs)	Industry B	Intermediate Inputs and Outputs			Final Demand				Total Output
	Industry C								
Value	Labor								
Added (GDP)	Property-type income	Value Added							
	Taxes								
	Total Output								

New Industries

- Additional detail added by creating new industries in the construction and utility sectors
- Utility does not differentiate between technologies
- Construction not even specific to electricity
- Industries disaggregated and allocated to different electricity technologies
- Input data pulled from a number of sources such as journal articles, reports, and the NREL Jobs and Economic Development Impacts (JEDI) suite of economic impact models
- JEDI has been validated (Billman and Keyser 2013) and results are similar to other studies (Wei et al. 2009)

New Industries

SAM example of how different energy technologies are treated


	Industry A	Industry B	Industry C	Energy
Industry A	A_1	B_1	C_1	E ₁
Industry B	A_2	B_2	C_2	E_2
Industry C	A_3	B_3	C_3	E ₃
Energy	A_4	B_4	C_4	E_4
Property-type Income	A_5	B ₅	C ₅	E ₅
Taxes	A_6	B_6	C ₆	E ₆
Labor	A_7	B ₇	C ₇	E ₇
Total Output	A-out	B-out	C-out	E-out

Two Major Publications to Date With the Modified Model

- Hannum, Christopher; Cutler, Harvey; Iverson, Terrance; Keyser, David. "Estimating the Implied Cost of Carbon in Future Scenarios using a CGE Model: The Case of Colorado." Energy Policy. Vol. 102 (2017): pp. 500-511.
- Hurlbut, David; Haase, Scott; Barrows, Clayton; Bird, Lori; Brinkman, Greg; Cook, Jeff; Day, Megan; Diakov, Victor; Hale, Elaine; Keyser, David; Lopez, Anthony; Mai, Trieu; McLaren, Joyce; Reiter, Emerson; Stoll, Brady; Tian, Tian; Cutler, Harvey; Bain, Dominique; Acker, Tom. "Navajo Generation Station and Federal Resource Planning; Volume 1: Sectoral, Technical, and Economic Trends." (2016). NREL/TP-6A20-66506. https://www.nrel.gov/docs/fy17osti/66506.pdf
- Many more publications of the model before additional detail added to energy sector

CGE Parameterization

- Primarily informed by RPM model
- Costs for new infrastructure
- Expenditures to operate new infrastructure

Technologies Explicitly Captured in the LA 100 Study

Selections made based on technologies represented in the RPM model

- Land-based wind
- Offshore wind
- CSP
- Solar PV
- Geothermal

- Natural gas
- Bioenergy
- Storage
- Coal

Model Results: Labor and Households

- Results by labor earning and household income category
- Labor is specific to a worker
- Can be more than one income source for a household

Nine Earnings and Income Categories

- ≤ \$10,000
- \$10,001 ≤ \$15,000
- \$15,001 ≤ \$25,000
- \$25,001 ≤ \$35,000
- \$35,001 ≤ \$50,000
- \$50,001 ≤ \$75,000
- \$75,001 ≤ \$100,000
- \$100,001 ≤ \$150,000
- ≥ \$150,001

Sample Results: Colorado RPS

	Absolute Change	Percent Change
Employment	7,115	0.19%
State tax revenue (\$millions) Local tax	\$21.4 \$0.4	0.07%
revenue (\$ millions)	70. 1	0.0070
SO ₂ (tons)	-81,651	-72.39%
NOX (tons)	-60,973	-40.68%
CO ₂ (tons)	-43,619,599	-42.41%

- 30% renewables for investor owned utilities, 20% larger co-ops, 10% small co-ops and municipal utilities
- Sample scenario in which renewables replace coalfired generation
- Low variability scenario uses
 Xcel Energy's figures
- Results can also be negative based on the scenario, especially with increased taxes or rates

Household Income Impacts (example from CO analysis)

Household Income Group	Absolute Change (\$mil)	Percent Changes
≤ \$10,000	\$151	0.08%
\$10,001 ≤ \$20,000	\$87	0.08%
\$20,001 ≤ \$40,000	\$170	0.09%
\$40,001 ≤ \$50,000	\$164	0.08%
\$50,001 ≤ \$70,000	\$212	0.05%
\$70,001 ≤ \$100,000	\$398	0.06%
≥ \$100,001	\$832	0.07%

Geography and Sub-City Detail

- Model covers the City of LA as defined by zip codes
- Results, therefore, are citywide
- Working with the California demography office to identify where households are clustered by income group at the sub-city level
- Level doesn't have to be zip codes defined by Census demographic data
- The model may say, for example, that income increases 4% for households that earn \$25,001 to \$35,000. We can identify where households in this income cohort tend to live.

Thank you. Questions?

Lunchtime

Accounting for Costs in Power Systems Planning

Daniel Steinberg

Outline

- Why do costs matter?
- Defining power system costs
- Estimating future power system costs
- Rate impact preview

Why do costs matter?

Why Costs Matter

Department of Water & Power

NOV 12, 2013 ACCOUNT NUMBER 000 000 1000

DATE DUE Dec 2, 2013 AMOUNT DUE \$ 244.29

Page 3 of 5

www.ladwp.com

www.ladwp.com 1-800-342-5397 Hours of operation - 7 am to 10 pm

DEFINITIONS

CRPSEA – (Capped Renewable Portfolio Standard Energy Adjustment) a charge reflecting the costs associated with RPS Operations and Maintenance, RPS debt service, and Energy Efficiency Programs.

ECA – (Energy Cost Adjustment) an adjustment that reflects the variations of fuel, energy and other associated costs.

ESA – (Electric Subsidy Adjustment) a charge reflecting the costs of subsides including senior, disabled, low income, traffic control lighting, and enterprise zone.

IRCA – (Incremental Reliability Cost Adjustment) a charge reflecting Operations and Maintenance and debt service related to Power Reliability Program cost and legacy RCA under-collection.

kWh – (kilo-watt-hour) the units in which electric usage is measured. One kWh equals 1000 watts of electricity used for one hour.

RCA – (Reliability Cost Adjustment) a charge reflecting the costs to support additional capital investments needed to improve reliability in areas of power distribution, transmission and generation infrastructure.

VEA — (Variable Energy Adjustment) a charge reflecting the costs of fuel, non-RPS power purchase agreements, non-RPS economy purchases, legacy ECAF under-collection, and base rate decoupling from energy efficiency impact.

VRPSEA – (Variable Renewable Portfolio Standard Energy Adjustment) a charge reflecting the costs of RPS market purchases and RPS costs above and beyond any Operations and Maintenance and debt service payments.

Electric Charges

BILLING PERIOD DAYS ZONE 9/12/13 - 11/11/13 60 2

RATE SCHEDULE

R-1 and R-1 [i] Residential Electric - Rate A Standard Service

NEXT SCHEDULED READ DATE

1/13/14

Questions about these charges? 1-800-342-5397

	Prev Yr	Nov 13
Total kWh used	684	558
Average daily kWh	12	9
Days in billing period	59	60
Your average daily cost of	of electricity	\$1.43

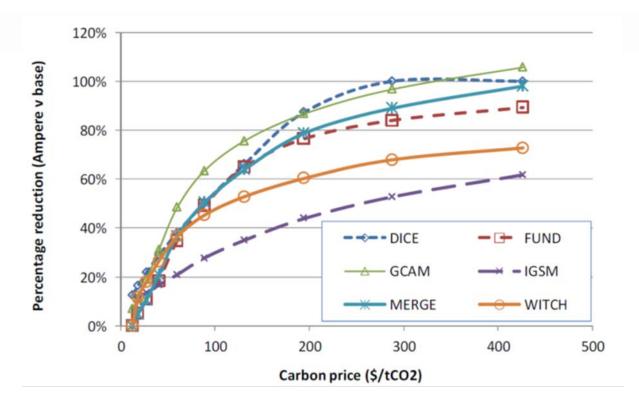
METER NUMBER	CURRENT READ	- PREVIOUS READ	-	TOTAL USED
00006-00334905	7068	6510		558 kWh
Tier 1 Energy		558 kWh x \$0.13935/k	Wh	77.76
Subtotal Energy Charges				\$77.76
City of Los Angeles Utility Tax		\$77.76 x 10%		7.78
State Energy Surcharge		558 kWh x \$0.00029/k	Wh	0.16

Total Electric Charges \$85.70

This service was previously billed on Account Number 1042614809.

Your Electric Usage by Tier

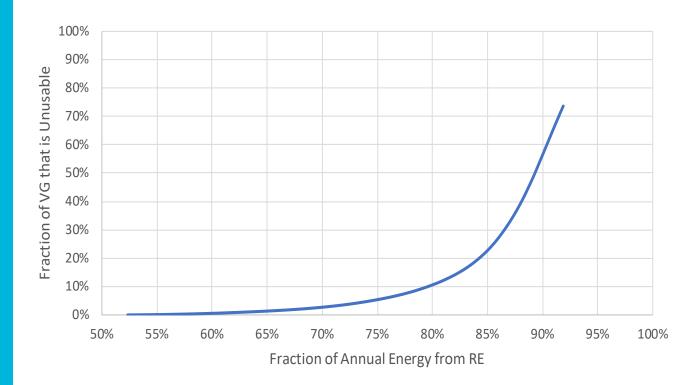
Tour Elecute Osage ii	y i içi	
Tier 1 \$0.13935/kWh	Tier 2	Tier3
First 1,000 kWh	Next 2,000 WWh	More than 3,000 kWh


Usage is billed at different rates, depending on how much you use. This graph shows how your energy usage relates to these tiers, and the rate you paid in each tier. For more, visit www.ladwp.com/res_electric

Green Power for a Green LA –LADWP's Green Power program replaces electricity from polluting power plants with energy generated from renewable resources. To learn more and sign up, visit www.ladwp.com/greenpower

Source: LADWP Website: How to Read the LADWP Bill

The Lower You Go, the Higher the Cost



Source: K. Gillingham, Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon, H., Reilly, J., Sztorc, P. 2015. Modeling uncertainty in climate change: a multi-model comparison. National Bureau of Economic Research.

 Scientific consensus is that the cost of carbon abatement increases significantly as total emissions approach zero.

Cost Challenges Arise Due to Variable Generation Sources

Defining Power System Costs

Power System Costs

Capital Costs: all one-time fixed costs associated with investment in bulk system infrastructure, distribution infrastructure, and/or enduse efficiency or demand response measures

Operating Costs: all fixed and variable operation and maintenance costs associated with least-cost unit commitment and dispatch of all generation, transmission, distribution, and consumption assets

Power System Costs

Generation and Transmission

- Capital: generation and transmission capacity, storage capacity
- Operating: fuel, labor, environmental compliance, purchased energy (e.g., PPAs)

Distribution

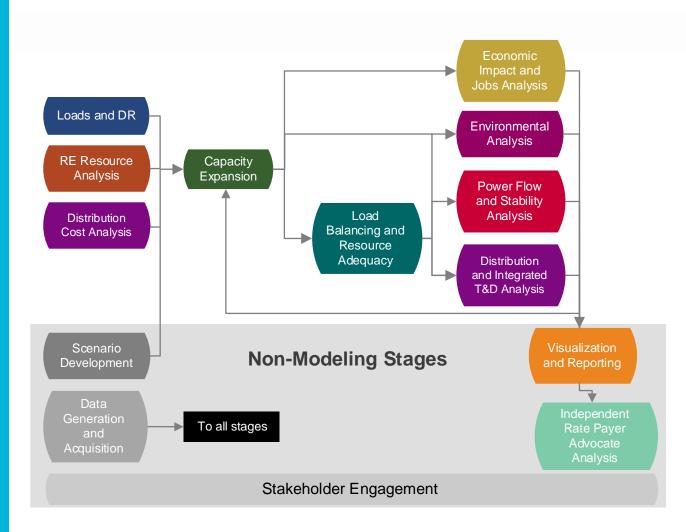
- Capital: transformers, distributed generation capacity, advanced inverters, new lines (overhead or underground), reconductoring, capacitors
- Operating: labor, fuel, trucks, cranes, parts

End-use

- Capital: device replacement, building envelope improvement, smartmeters
- Operating: labor, fuel, parts

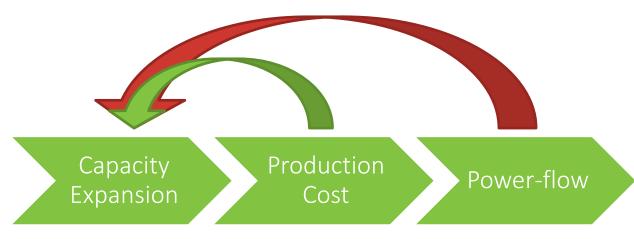
How Do We Calculate Costs?

The Ideal


$$\min \sum_{t,y} \frac{I_{t,y} + O_{t,y}}{(1+r)^y}$$

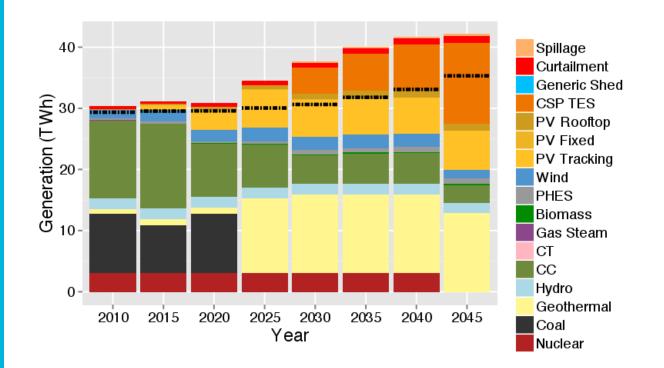
Where I is a vector of investment costs;

O is a vector of operating costs in timestep, t,
in year, y;
r is the discount rate



Too Big a Problem for One Model

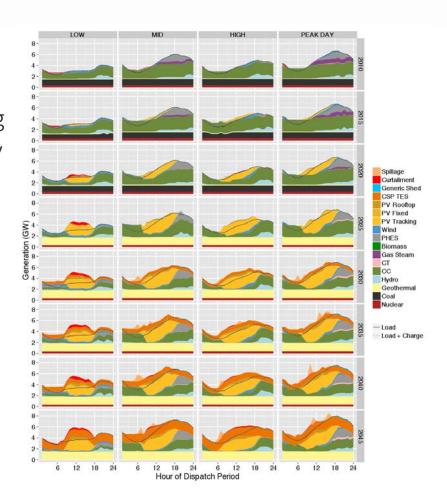
General Approach: Estimate, Then Refine


Estimate investment & reduced-form operational costs

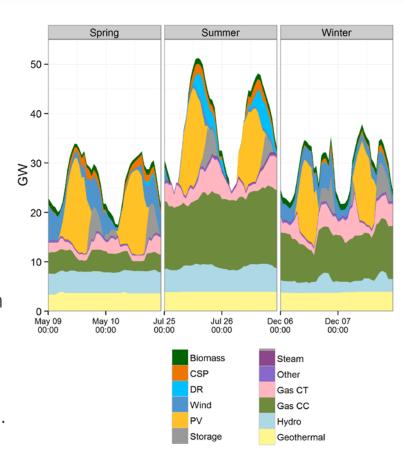
Calculate detailed operational costs; identify additional investments needed to address congestion

Identify any other necessary bulk and distributed infrastructure to mitigate power-flow issues

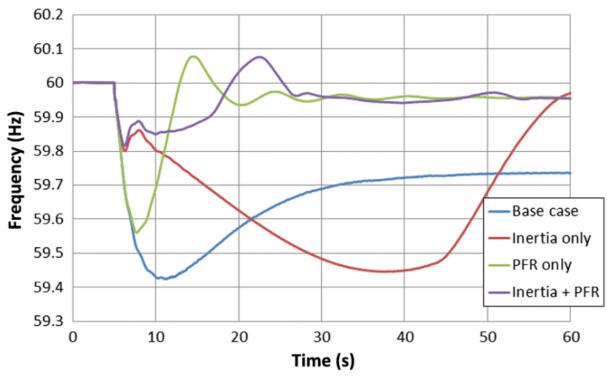
Capacity Expansion Models (CEMs)


- Main goal is to <u>identify</u> optimal investment pathway to future
- This study utilizes multiple investment and adoption models:
 - RPM (bulk system generation and transmission), dGen (distributed generation), DISCO (distribution-scale transmission)

CEMs Estimate and Rely on ReducedForm Dispatch


- RPM informs investment decision-making based on hourly dispatch for 4 representative days within the year
- Operational costs are relatively rough estimates

Detailed Operational Modeling: Production Cost Models (PCMs)

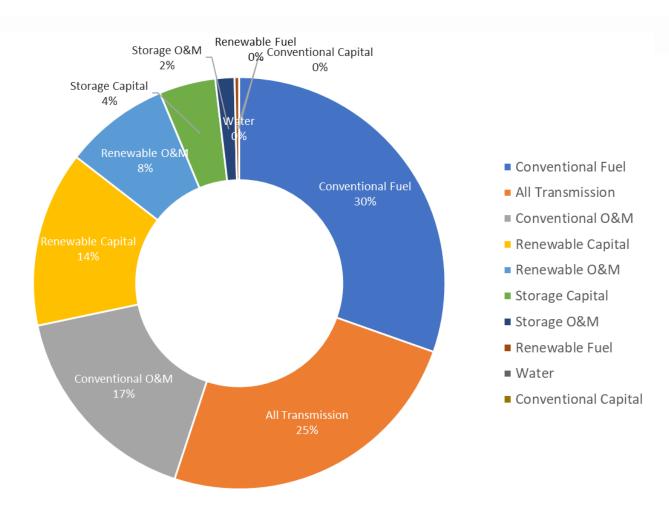

- PCMs use the system specified by CEMs and calculate detailed
 5-minute dispatch for a full year
- Allows for detailed accounting of operational costs fuel, startup, shutdown, ramping, etc.
- Identify any substantial congestion issues that could be resolved with additional bulk or distributed assets (e.g. additional transmission or generation capacity)

Power-Flow Modeling Identifies Steady-State Issues That Need to Be Resolved with Additional Capital Investments

Steady-state analysis can identify and demonstrate the value of alternative options for mitigating power-flow constraints and very short-term disruptions in the grid

Source: Gevorgian, V., Y. Zhang, and E. Ela. 2015. Investigating the impacts of wind generation participation in interconnection frequency response. IEEE Trans. on Sustainable Energy. 6 (3): 1004-1012

Approach: Review


Estimate investment & reduced-form operational costs

Calculate detailed operational costs; identify additional investments needed to address congestion

Identify any other necessary bulk and distributed infrastructure to mitigate power-flow issues

A Detailed View of System Costs

Example composition of the total present value of system costs

Rate Analysis

- This study will include an analysis of the potential impacts of 100% renewable energy on LADWP rates
- NREL will calculate all costs necessary to calculate potential rate impacts
- LADWP will use NREL cost data to conduct rate impact analysis
- Rate Payer Advocate will review costs and rate analysis
- Results will be presented to Advisory Group
- Caveat: Estimating rate impacts accurately out to 2045 is very difficult. It is likely that rate structures will evolve considerably over the next 25 years.

Thank you

100% Renewable Energy Study Summary/Milestones

Anton Sy
Project Manager
November 15, 2018

LA100 Advisory Group

- City Council motion
- Representatives from environmental groups, neighborhood councils, academia, premier customers, City government, business associations, utilities
- Protocols and operating principles
- Meeting plan

LA100 is Unique

- Over 4 million residents
- 1.5 million ratepayers
- Largest municipal utility
- Fully vertically integrated
- Balancing Authority

LADWP Electrical System

• Study examines:

Reliability

Health

Equity

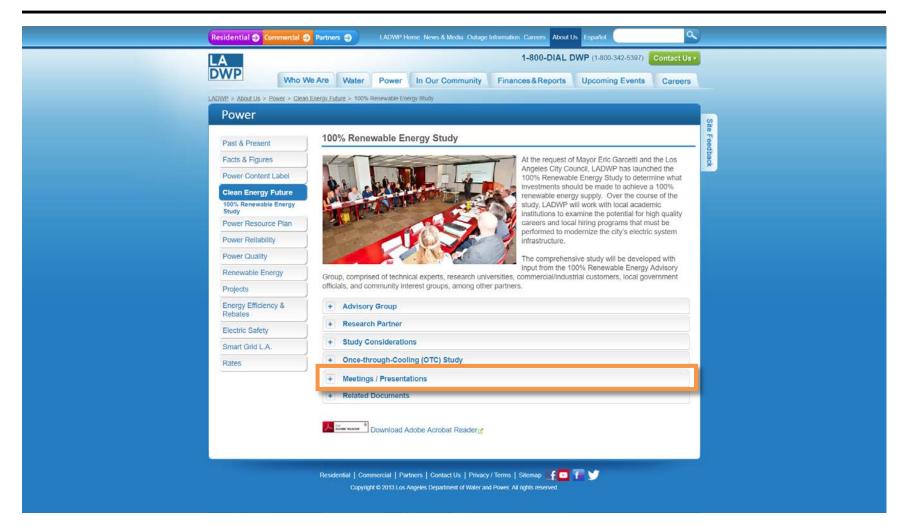
Affordability

Advisory Group and Project Team Tour

Pine Tree Wind

Barren Ridge SS

Beacon Solar and Energy Storage


2019 – 2020 Quarterly meetings

- Preliminary results
- Environmental analysis
- Visualizations
- Final results
- Final report
- Future quarterly meeting:
 - March 28, 2019
 - June 27, 2019
 - September 19, 2019
 - December 5, 2019
 - March 5, 2020
 - June 25, 2020

Project Website

Thank You!

