CITY OF LOS ANGELES DEPARTMENT OF WATER AND POWER INTRADEPARTMENTAL CORRESPONDENCE

Date:

October 5, 2021

To:

Board of Water and Power Commissioners

From:

Martin L. Adams, General Manager and Chief Engineer

Subject:

Presentation - Energy Storage Update

Board Meeting of October 26, 2021

For your review, please find attached the following PowerPoint presentation:

Power System

• Energy Storage Update

If you have any questions, please contact me at (213) 367-1338.

Attachment

LA100

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

Energy Storage Update

October 26, 2021

LA100 Study Outcomes

LA100 Study was completed and final report was released on March 24, 2021.

- 100% renewable energy is achievable through multiple pathways
- Building and transportation electrification key to affordability
- Investment of approx. \$57-87B in addition to existing obligations (e.g. PSRP)
- Significant job creation (9,500 jobs)
- We can achieve 100% by 2035
- There are common investments across all pathways to 100%

Common Investments Across All Scenarios

Electrification
Efficiency
Flexible Load

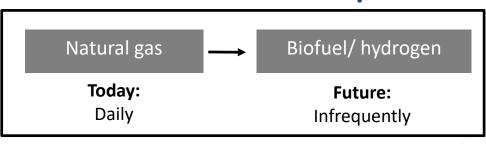
Customer Rooftop Solar

Renewable Energy

Solar: + >5,700 MW Wind: + >4,300 MW

Storage

+ >2,600 MW



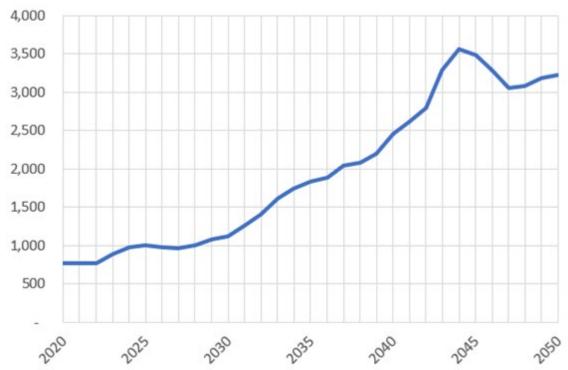
Transmission,
Distribution

Renewably Fueled
Dispatchable
Turbines
+>2,600 MW
(in basin)

Much More

Accelerated Energy Storage

- Build over 1,000 MW of energy storage by 2030 inbasin and out-of-basin
- Utility scale energy storage at or near most in-basin Generating Stations
- Negotiate expansion of Beacon Energy Storage by 25 MW
- Expand energy storage by co-locating storage at all future utility scale solar projects
- Advertised Energy Storage Rolling Request for Proposals in 2021
- Increased usage of Castaic pumped hydro to integrate increased renewables



Energy Storage Applications

- Grid reliability
- Reduce curtailment
- Resource adequacy
- Make renewables dispatchable
- Ancillary services
- Distribution needs
- Energy shift
- Arbitrage

Potential Renewable Curtailment (GWh)

Note: forecasted curtailment levels will be an outcome of the SLTRP and will depend on many factors, including levels of energy storage

Type of Energy Storage Technology

Electro-Chemical (BESS)

Thermal

Overview

Energy Storage makes electricity available when renewables are not generating.

Gravity

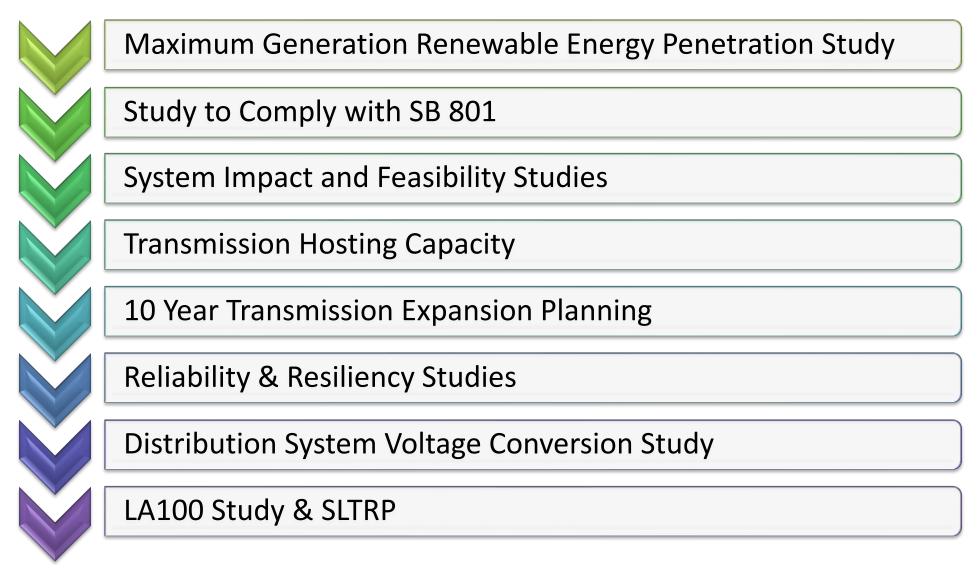
Planning Guidelines

Identify system
Needs

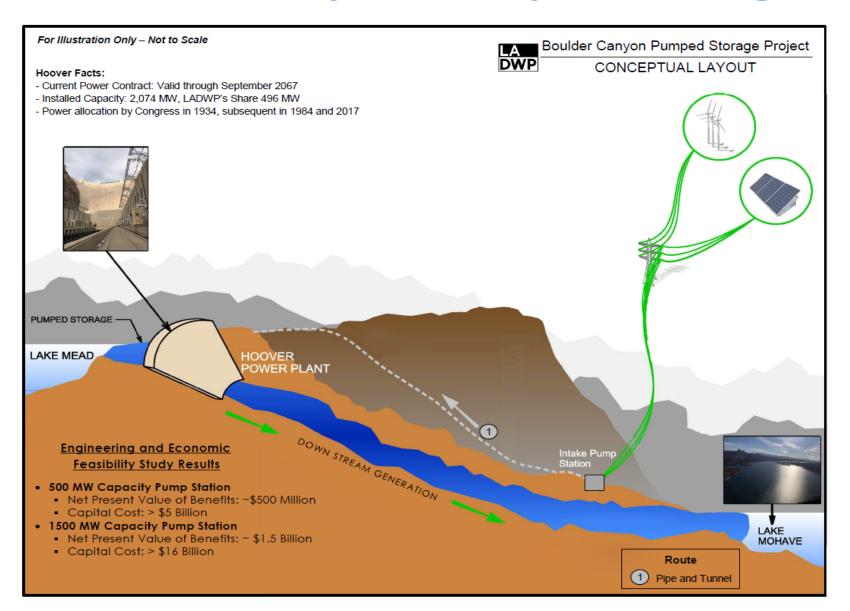
2

Studies

Consider External Factors

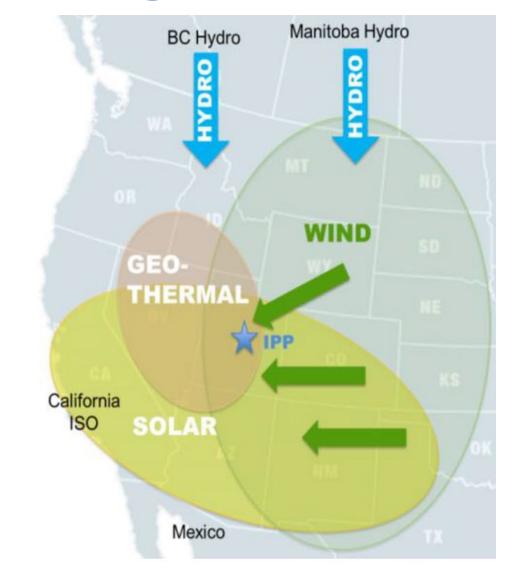

- System reliability and resiliency studies
- Transmission assessment
- Integrating renewable energy
- Reducing peak demand
- Deferring power system upgrades

Evaluate Costs


- Identify storage applications
- Evaluate emerging storage technologies
- Perform studies to assess use case

- Safety
- Regulatory Issues
- Price projections
- End of life applications and disposal
- Environmental impact
- Impact to frontline communities

Various Studies Impacting ES Strategy

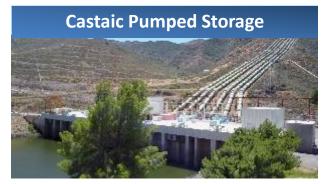

Boulder Canyon Pumped Storage

Green H2 Production & Storage @ IPP in Utah

Unlocking IPP's Potential

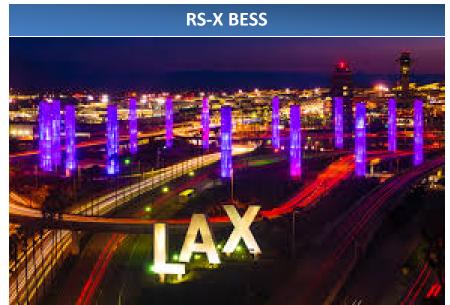
- Proximity to regional renewables
- Transmission system
- Water rights
- Over 4,000 acres of land
- Unique underground salt formation ideal for fuel storage
- Highly skilled workforce at IPSC

Accomplishments



2030 In-Basin Tentative Targets

Facility	Technology	Ownership	COD	Capacity (MW)
Utility Scale at or near Generating Stations	TBD	Utility	Q2 2028	270
Behind the Meter (Batteries)	Li-lon	Customer	Various	50
Distributed Storage	Li-lon	Utility	Q1 2023	10
RS-X	Li-lon	Utility	Q2 2025	30
Target Goal				360


2030 Out-of-Basin Tentative Targets

Facility	Technology	Ownership	In Service	Capacity (MW)
Beacon	Non-Battery Solution	APA	Q4 2023	25
Eland I & II	Li-lon	PPA (PV+S)	Q4 2023	281
Generic - PPA	Li-lon	PPA (PV+S)	Q4 2023	75
Generic - PPA	Li-lon	PPA (PV+S)	Q4 2024	300
Target Goal				681

Upcoming Projects

Battery Recycling and Disposal

- EPRI conducted study on industry overview and cost estimates of battery recycling:
 - Battery Recycling Process & Regulation
 - New players in battery recycling
 - Cost and Economics of Recycling
 - Large Lithium Ion (Beacon BESS)
 - Smaller mixed use systems (JFB Lithium & Flow BESS)
 - Other Lithium Chemistries
 - Next Steps

Battery Recycling Process

- Components physically separated before valuable materials recovered during recycling, via solvent- & heat-based processes.
 - Metal Solids & Alloys, i.e. Cobalt, Nickel, Copper
 - Waste gases cleaned, waste products sold or disposed

Beacon BESS: 382,000 lbs. to be recycled, at the cost of additional 6% of initial

capital investment.

Heat-Based Recovery

Solvent-Based Recovery

Next Steps

- Updating near-term and adopting long-term energy storage goals as part of 2022 SLTRP process
- Evaluation and piloting of long-duration energy storage technologies for potential use in-basin
- Seek Federal and State funding opportunities to pilot storage technologies
- Evaluation of competencies and staffing for operations and maintenance of storage through the Integrated Human Resource Plan

ACHIEVING 100% RENEWABLE ENERGY IN LOS ANGELES

Questions?