

The Los Angeles 100% Renewable Energy Study

Buildings Sector Bottom-up Load Modeling

Eric Wilson

Advisory Group Meeting, June 13, 2019

Session Goals

1. Become familiar with methodology for buildings sector load modeling

2. Review buildings electrification and efficiency load projections

3. Review sample results

Definition of Buildings Sector Load

For today's presentation:

Included

- Residential buildings
- Commercial buildings

Not included

- Distributed solar PV
- Electric vehicle charging
- Demand response
- Industry/special loads

Context: How does load modeling fit in?

Buildings load impacts all downstream models

Building Stock Simulation

Building stock characteristics database

Physics-based computer modeling

High-performance computing

Building stock characteristics database

Physics-based computer modeling

High-performance computing

Building Characteristics

EIA Res/Com Energy Consumption Survey
NAHB Homebuilder Surveys
IECC Historical Energy Codes
Other national, regional, and local audit databases

Census Data

Census

American Community Survey (ACS)

Costs

EIA NREL NREL/Navigant Electricity and fuel costs OpenEl.org Utility Rate Database Measure Cost Database

Climate Locations

NREL

TMY3 weather data

Customization for Los Angeles

Los Angeles City/County

- Los Angeles Region Imagery Acquisition Consortium (LAR-IAC)
- LA County GIS Data Portal various
- Los Angeles County Assessors Database
- LA DBS Existing Buildings Energy & Water Efficiency Program'
- Dodge Data and Analytics Metropolitan Construction Insight

California (filtered to LA/DWP when possible)

- California Title 24 (current and historical building energy codes)
- California Database for Energy Efficiency Resources (DEER)
- California End Use Survey (CEUS)
- California Commercial Saturation Survey Report for the California Public Utilities Commission
- 2009 California Residential Appliance Saturation Study (RASS), 2012 California Lighting and Appliance Saturation Survey (CLASS)
- Report on Complete Schools & 2015 Student Audit California Department of Education
- California Department of Finance Population Projections for LA County
- Weather data from multiple weather stations covering LA microclimates

Building stock

Physics-based computer modeling

High-performance

U.S. DOE Tools **OpenStudio**

EnergyPlus

Detailed sub-hourly energy simulations

Building stock

Physics-based computer modeling

High-performance computing

Building stock

Physics-based modeling

High-performance computing

Building stock

Physics-based modeling

High-performance computing

Buildings Sector Load Projections

Load Projection Design Philosophy

- Load projections cover a range of outcomes:
 reference, moderate, high, stress
- Outcomes used to back-cast electrification and efficiency adoption rates
- Outcomes are independent of market context and policy implementation (e.g., prices or incentives)

How Each Scenario Characterizes Load

For all but one LA 100 scenario, the three dimensions vary together:

- Reference
- Moderate
- High

The name indicates the level of energy efficiency, electrification, and demand response.

How Each Scenario Characterizes Load

For all but one LA 100 scenario, the three dimensions vary together:

- Reference
- Moderate
- High

The name indicates the level of energy efficiency, electrification, and demand response.

The "High Load Stress" scenario uses a fourth load projection:

Stress (combines High electrification and Reference efficiency)

Buildings Sector Load Projections

Projection Name		Residential Buildings	Commercial Buildings
Reference	Electrification	Low electrification (matches SLTRP¹ projections)	
Reference	Efficiency	Designed to match 2017 SLTRP 10-year efficiency goals	
	Electrification	Low-hanging fruit electrification	
Moderate	Efficiency	Sales shares distributed across available efficiency levels	Moderate adoption of above-code efficiency levels (80% adoption of Title 24³ code 5 yrs ahead of schedule)
High ²	Electrification	100% electric sales share by 2030 100% electric homes by 2050	100% electric sales by 2030 (HVAC and water heating) 100% electric buildings by 2050 (almost)
GREEN NEW DEAL	Efficiency	100% sales share of highest efficiency levels (currently available technology)	Substantial adoption of above-code efficiency levels (70% adopt est. Title 24 code 15 yrs ahead of schedule)

- All projections use the same building stock growth assumption
- All projections assume natural turnover of equipment using standard lifetimes and commercial renovation rates (no early replacements)
- All projections use the same weather (2012)

¹ SLTRP = 2017 Final Power Strategic Long-Term Resource Plan

² High projection is based on our interpretation of of LA's Green New Deal Sustainable City pLAn 2019 (100% net zero carbon buildings by 2050; energy use intensity reduced by 44% by 2050)

³ LA100 estimates projections of Title 24 (California's Building Energy Efficiency Standards) for 2022–2050

Buildings Sector Load Projections

Projection Name		Residential Buildings	Commercial Buildings
Reference	Electrification	Low electrification (matches SLTRP¹ projections)	
Reference	Efficiency	Designed to match 2017 SLTRP 10-year efficiency goals	
	Electrification	Low-hanging fruit electrification	
Moderate	Efficiency	Sales shares distributed across available efficiency levels	Moderate adoption of above-code efficiency levels (80% adoption of Title 24³ code 5 yrs ahead of schedule)
High ²	Electrification	100% electric sales share by 2030 100% electric homes by 2050	100% electric sales by 2030 (HVAC and water heating) 100% electric buildings by 2050 (almost)
GREEN NEW DEAL TO	Efficiency	100% sales share of highest efficiency levels (currently available technology)	Substantial adoption of above-code efficiency levels (70% adopt est. Title 24 code 15 yrs ahead of schedule)
Stress	Electrification	High electrification	
Jul 535	Efficiency	Reference efficiency	

- All projections use the same building stock growth assumption
- All projections assume natural turnover of equipment using standard lifetimes and commercial renovation rates (no early replacements)
- All projections use the same weather (2012)

- ¹ SLTRP = 2017 Final Power Strategic Long-Term Resource Plan
- ² High projection is based on our interpretation of of LA's Green New Deal Sustainable City pLAn 2019 (100% net zero carbon buildings by
- 2050; energy use intensity reduced by 44% by 2050)
- ³ LA100 estimates projections of Title 24 (California's Building Energy Efficiency Standards) for 2022–2050

Building Stock Growth Projections

Residential Building Stock Growth Projections

- Using projections from California Department of Finance
- Demolitions and new construction modeled by vintage and building type
- Growth held constant across all load projection cases

Commercial Building Stock Growth Projections

- Using projections through 2022 from Dodge Data and Analytics Metropolitan Construction Insight
- Growth held constant across all scenarios

Electrification Adoption Projections

Which end uses are most important for buildings electrification?

Which end uses are most important for buildings electrification?

Residential Water Heaters

Efficiency Adoption Projections

Residential Air Conditioning

Large increase in fraction of homes with heat pumps

Commercial HVAC Efficiency

¹ LA100 estimates projections of Title 24 (California's Building Energy Efficiency Standards) for 2022–2050

Sample Results

Where are we now?

Complete:

- Validation/calibration
- Final Run "High" projection updated to reflect pLAn
- Final Run modeling

In progress:

Processing and interpreting Final Run results

What do results look like?

What have we learned? Initial Run Results vs. Reality

nsumption (TWh) Calibration and Validation Monthly Calibra (GWh) Daily Total Load 60 LADWP Data 50 ResStock Model Consumption **DWP** Data Stock Model 40 30 20 10 Electric 0 DWP Data Feb Mar May Jun Jul Aug Sep Oct Νον Dec Jan Apr sStock Model Day of Year

Day

Calibration and Validation

Calibration/validation data sources

- LADWP customer billing data (monthly; all customers)
- LADWP load research data (hourly; residential/commercial sectors)
- LADWP smart meter data (15-minute; subset of customers)

Initial Run Snapshot: Peak Day, Average Winter Day Profiles

Example Initial Run results; buildings load only; Final Run results will reflect updates (e.g., pLAn)

Initial Run Snapshot: Peak Day, Average Winter Day Profiles

Example Initial Run results; buildings load only; Final Run results will reflect updates (e.g., pLAn)

Q&A

The Los Angeles 100% Renewable Energy Study

Residential Cooking Ranges

Residential Clothes Dryers

Year

Residential Space Heating

Commercial HVAC

Commercial Water Heaters

Growth in air conditioning

Residential Lighting

Residential Clothes Washers

Residential Dishwashers

Residential Attic Insulation

Residential Crawlspace Insulation

Residential Roof Material

Residential Wall Insulation

Residential Infiltration

Residential Windows

Residential Refrigerators

Commercial Service Water Heating Efficiency

Commercial Envelope Efficiency

Commercial Interior Lighting Efficiency

Commercial Exterior Lighting Efficiency

